scholarly journals Adaptive Control Design for Arneodo Chaotic System with Uncertain Parameters and Input Saturation

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Chunhua Cheng ◽  
Fengjuan Gao ◽  
Jingshuo Xu ◽  
Yuanxin Wang ◽  
Tao Yuan

In this paper, tracking controller and synchronization controller of the Arneodo chaotic system with uncertain parameters and input saturation are considered. An adaptive tracking control law and an adaptive synchronization control law are proposed based on backstepping and Lyapunov stability theory. The adaptive laws of the unknown parameters are derived by using the Lyapunov stability theory. To handle the effect caused by the input saturation, an auxiliary system is used to compensate the tracking error and synchronization error. The proposed adaptive tracking control and synchronization schemes ensure the effects of tracking and synchronization. Several examples have been detailed to illuminate the design procedure.

2008 ◽  
Vol 22 (08) ◽  
pp. 1015-1023 ◽  
Author(s):  
XINGYUAN WANG ◽  
XIANGJUN WU

This paper studies the adaptive synchronization and parameter identification of an uncertain hyperchaotic Chen system. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two identical hyperchaotic Chen systems asymptotically synchronized. With this approach, the synchronization and parameter identification of the hyperchaotic Chen system with five uncertain parameters can be achieved simultaneously. Theoretical proof and numerical simulations demonstrate the effectiveness and feasibility of the proposed scheme.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Chi Nguyen Van

This paper addresses the problem of adaptive tracking control for uncertain fully actuated dynamical systems with additive disturbance (FDSA) based on the sliding mode. We use the adaptive mechanism to adjust the uncertain parameters in sliding mode control law which can be switched to two modes depending on the sliding surface. By choosing appropriately the parameters in control law, the desired transient time can be obtained without effects of uncertain parameters and additive disturbances. The chattering phenomenon can be minimized by a chosen constant. This control method is applied to the angles tracking control of the twin rotor multi-input multi-output system (TRMS) which have nonlinear characteristics, the input torque disturbances and the coupling between the horizontal and vertical movements. The simulation and experimental results are presented that validate the proposed solution.


Author(s):  
Heli Gao ◽  
Mou Chen

This paper studies the fixed-time disturbance estimate and tracking control for two-link manipulators subjected to external disturbance. A fixed-time extended-state disturbance observer (FxTESDO) is proposed by improving the extended state observer. Also, a fixed-time inverse dynamics tracking control (FxTIDTC) scheme based on the FxTESDO is given for two-link manipulators. The fixed-time convergence of the FxTESDO and FxTIDTC is proved by the Lyapunov stability theory and with the aid of the bi-limit homogeneous technique. Numerical simulations are employed to illustrate the effectiveness of the proposed FxTIDTC.


2013 ◽  
Vol 325-326 ◽  
pp. 1210-1214
Author(s):  
Costin Ene

In this paper, an adaptive backstepping type design is proposed to control the complex nonlinear behavior of the wing rock phenomenon. This method, based on Lyapunov stability theory, can simultaneouslyachieve parameters identification and control.Finally numerical simulations are presented to justify the effectiveness of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document