scholarly journals Improved Error Reduction and Hybrid Input Output Algorithms for Phase Retrieval by including a Sparse Dictionary Learning-Based Inpainting Method

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jian-Jia Su ◽  
Chung-Hao Tien

The phase retrieval (PR), reconstructing an object from its Fourier magnitudes, is equivalent to a nonlinear inverse problem. In this paper, we proposed a two-step algorithm that traditional ER/HIO iteration plays as the coarse feature reconstruction, whereas the KSVD-based inpainting technique deals with the fine feature set accordingly. Since the KSVD allows the content of oversampled dictionary with sparse representation to adaptively fit a given set of object examples, as long as the ER/HIO algorithms provide decent object estimation at early stage, the pixels violating the object constraint can be restored with superior image quality. The numerical analyses demonstrated the effectiveness of ER + KSVD and HIO + KSVD through multiple independent initial Fourier phases. With its versatility and simplicity, the proposed method can be generalized to be implemented with more PR state-of-the-arts.

Geophysics ◽  
1994 ◽  
Vol 59 (9) ◽  
pp. 1327-1341 ◽  
Author(s):  
Douglas W. Oldenburg ◽  
Yaoguo Li

We develop three methods to invert induced polarization (IP) data. The foundation for our algorithms is an assumption that the ultimate effect of chargeability is to alter the effective conductivity when current is applied. This assumption, which was first put forth by Siegel and has been routinely adopted in the literature, permits the IP responses to be numerically modeled by carrying out two forward modelings using a DC resistivity algorithm. The intimate connection between DC and IP data means that inversion of IP data is a two‐step process. First, the DC potentials are inverted to recover a background conductivity. The distribution of chargeability can then be found by using any one of the three following techniques: (1) linearizing the IP data equation and solving a linear inverse problem, (2) manipulating the conductivities obtained after performing two DC resistivity inversions, and (3) solving a nonlinear inverse problem. Our procedure for performing the inversion is to divide the earth into rectangular prisms and to assume that the conductivity σ and chargeability η are constant in each cell. To emulate complicated earth structure we allow many cells, usually far more than there are data. The inverse problem, which has many solutions, is then solved as a problem in optimization theory. A model objective function is designed, and a “model” (either the distribution of σ or η)is sought that minimizes the objective function subject to adequately fitting the data. Generalized subspace methodologies are used to solve both inverse problems, and positivity constraints are included. The IP inversion procedures we design are generic and can be applied to 1-D, 2-D, or 3-D earth models and with any configuration of current and potential electrodes. We illustrate our methods by inverting synthetic DC/IP data taken over a 2-D earth structure and by inverting dipole‐dipole data taken in Quebec.


1998 ◽  
Vol 15 (11) ◽  
pp. 2849 ◽  
Author(s):  
Hiroaki Takajo ◽  
Tohru Takahashi ◽  
Ryuzo Ueda ◽  
Makoto Taninaka

Sign in / Sign up

Export Citation Format

Share Document