scholarly journals Electrochemical Reduction of Oxygen and Nitric Oxide on Mn-Based Perovskites with Different A-Site Cations

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
K. Kammer Hansen

Four LnMnO3+δ (Ln = La, Pr, Sm, and Gd) perovskites were synthesized and characterized by powder XRD. It was shown that the perovskite lattice became more and more distorted when lowering the size of the A-site cation. The manganite-based perovskites were evaluated for the ability to electrochemically reduce oxygen and nitric oxide in the temperature range of 200 to 400°C. At the lowest temperature, the electrodes were better at reducing nitric oxide than oxygen. At higher temperatures, the activity for the reduction of oxygen and nitric oxide became similar. The activation energies for the reduction of oxygen and nitric oxide were markedly different for LaMnO3+δ and PrMnO3+δ whereas it was similar for SmMnO3+δ and GdMnO3+δ.

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


2010 ◽  
Vol 55 (17) ◽  
pp. 4902-4908 ◽  
Author(s):  
Amandine Cournet ◽  
Mathieu Bergé ◽  
Christine Roques ◽  
Alain Bergel ◽  
Marie-Line Délia

Sign in / Sign up

Export Citation Format

Share Document