scholarly journals The Effect of Shear Sliding of Vertical Contraction Joints on Seismic Response of High Arch Dams with Fine Finite Element Model

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shengshan Guo ◽  
Jianxin Liao ◽  
Hailong Huang ◽  
Hui Liang ◽  
Deyu Li ◽  
...  

The contraction joints of arch dams with and without shear keys are simplified to be with no-slip condition and with relative sliding condition, respectively. Based on the Lagrange multiplier method, a contact model considering the manner of independent cantilever dead load type with no-slip condition and relative sliding condition is proposed to model the nonlinearities of vertical contraction joins, which is special to the nonlinear analysis of arch dams considering the manner of dead load type. Different from the conventional Gauss iterative method, the strategy of the alternating iterative solution of normal force and tangential force is employed. The parallelization based on overlapping domain decomposition method (ODDM) and explicit message passing using distributed memory parallel computers is employed to improve the computational efficiency. An existing high arch dam with fine finite element model is analyzed to investigate the effect of shear sliding of vertical joints on seismic response of the arch dam. The result shows that the values of maximum principal tensile stress under relative sliding condition are significantly greater than those under no-slip condition.

2019 ◽  
Vol 19 (03) ◽  
pp. 1950021 ◽  
Author(s):  
Shengshan Guo ◽  
Hui Liang ◽  
Deyu Li ◽  
Houqun Chen ◽  
Jianxin Liao

The actual dead load of an arch dam should be applied gradually through staged construction and sequenced grouting. However, the cantilever- and integral-type dead loads commonly used in the analysis of arch dams represent simplified versions of the actual loading. In this paper, these two types of dead loads, i.e. cantilever and integral types, are presented based on the Lagrange multiplier method considering the nonlinear behaviors of contraction joints. Based on the finite element method and an appropriate contact model together with artificial viscoelastic boundary conditions, a dynamic analysis model of a dam–foundation–reservoir system is established in consideration of the interactions between the arch dam and foundation, the opening and closing of contraction joints, and the radiation damping effect of the far-field boundary. Taking a 300 m high arch dam in the strong earthquake area of West China as an example, a fine mesh finite element model with a total of approximately 3.5 million degrees of freedom is established. The separate effects of the cantilever and integral dead loads on the static and dynamic responses of the dam are studied. The results demonstrate that the distribution and magnitude of the contraction joint opening width and maximum tensile stress are different under the two different dead load simplifications.


2011 ◽  
Vol 250-253 ◽  
pp. 3923-3926
Author(s):  
Shao Qing Hu ◽  
Bai Tao Sun

In this paper, the dynamic responses of an arch dam in the case of normal water level and operating low water level were simulated by using additional mass model and incompressible finite element model for reservoir respectively. The results showed that the reservoir models have a great impact on dynamic response of arch dams. The maximum principle tensile stress using incompressible finite element model of fluid is less than that using additional mass model. With the depth of the reservoir water increasing, the hydrodynamic pressure acting ton the dam surface caused by earthquake force increased and the dynamic responses of dam also increased.


Micropiles are reinforced grouted piles that have small diameters commonly not higher than 30 cm. They are widely used for slope stabilization, controlling structural settlement, and in some cases, as retaining structures. Also, they are used for resisting dynamic uplift loads, seismic retrofit mainly in restrictive and low headroom areas, and retrofitting of historical monuments. The main goal of this research is to develop a finite element model that can capture the different aspects of seismic behavior of multi-story structure supported with deep foundation via using of micropiles. Also, a main target for the executing numerical modelling is to show the influence of the surrounding soil on this system and vice versa. Firstly, a representative two-dimensional finite element model is conducted to represent the soil-structure interaction system under seismic excitation supported with proper boundary conditions in PLAXIS 2D V20 for dynamic analysis based on previous recommendations considering the nonlinear soil behavior. The behavior of micropiles is studied and verified using previous results. Based on these models, the effect of lateral dynamic loads on the response of a structure with different foundation types is investigated. Also, a wide range of parametric studies, considering structure properties, earthquake magnitude, micropile diameter, micropile length, and the number of micropiles, have been carried out in order to investigate the actual interaction between soil, substructure, and superstructures. The study results showed that the seismic response of the structure is highly affected by the properties of the sub-surface soil layer. Consequently and similarly, analysis results established that underpinning using micropiles is an efficient technique for controlling the seismic response of existing structures.


Sign in / Sign up

Export Citation Format

Share Document