heterogeneous soil
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 46)

H-INDEX

28
(FIVE YEARS 4)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 580
Author(s):  
Emna Ayari ◽  
Zeineb Kassouk ◽  
Zohra Lili-Chabaane ◽  
Nicolas Baghdadi ◽  
Mehrez Zribi

The objective of this paper was to estimate soil moisture in pepper crops with drip irrigation in a semi-arid area in the center of Tunisia using synthetic aperture radar (SAR) data. Within this context, the sensitivity of L-band (ALOS-2) in horizontal-horizontal (HH) and horizontal-vertical (HV) polarizations and C-band (Sentinel-1) data in vertical-vertical (VV) and vertical-horizontal (VH) polarizations is examined as a function of soil moisture and vegetation properties using statistical correlations. SAR signals scattered by pepper-covered fields are simulated with a modified version of the water cloud model using L-HH and C-VV data. In spatially heterogeneous soil moisture cases, the total backscattering is the sum of the bare soil contribution weighted by the proportion of bare soil (one-cover fraction) and the vegetation fraction cover contribution. The vegetation fraction contribution is calculated as the volume scattering contribution of the vegetation and underlying soil components attenuated by the vegetation cover. The underlying soil is divided into irrigated and non-irrigated parts owing to the presence of drip irrigation, thus generating different levels of moisture underneath vegetation. Based on signal sensitivity results, the potential of L-HH data to retrieve soil moisture is demonstrated. L-HV data exhibit a higher potential to retrieve vegetation properties regarding a lower potential for soil moisture estimation. After calibration and validation of the proposed model, various simulations are performed to assess the model behavior patterns under different conditions of soil moisture and pepper biophysical properties. The results highlight the potential of the proposed model to simulate a radar signal over heterogeneous soil moisture fields using L-HH and C-VV data.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3038
Author(s):  
Kade D. Flynn ◽  
Briana M. Wyatt ◽  
Kevin J. McInnes

Soil moisture is a critical variable influencing plant water uptake, rainfall-runoff partitioning, and near-surface atmospheric conditions. Soil moisture measurements are typically made using either in-situ sensors or by collecting samples, both methods which have a small spatial footprint or, in recent years, by remote sensing satellites with large spatial footprints. The cosmic ray neutron sensor (CRNS) is a proximal technology which provides estimates of field-averaged soil moisture within a radius of up to 240 m from the sensor, offering a much larger sensing footprint than point measurements and providing field-scale information that satellite soil moisture observations cannot capture. Here we compare volumetric soil moisture estimates derived from a novel, less expensive lithium (Li) foil-based CRNS to those from a more expensive commercially available 3He-based CRNS, to measurements from in-situ sensors, and to four intensive surveys of soil moisture in a field with highly variable soil texture. Our results indicate that the accuracy of the Li foil CRNS is comparable to that of the commercially available sensors (MAD = 0.020 m3 m−3), as are the detection radius and depth. Additionally, both sensors capture the influence of soil textural variability on field-average soil moisture. Because novel Li foil-based CRNSs are comparable in accuracy to and much less expensive than current commercially available CRNSs, there is strong potential for future adoption by land and water managers and increased adoption by researchers interested in obtaining field-scale estimates of soil moisture to improve water conservation and sustainability.


Chemosphere ◽  
2021 ◽  
Vol 280 ◽  
pp. 130655
Author(s):  
Xueming Lin ◽  
Xingjian Yang ◽  
Zheng Hu ◽  
Yulong Zhang ◽  
Jinjin Wang ◽  
...  

2021 ◽  
Author(s):  
Stefania Fabozzi ◽  
Albarello Dario ◽  
Pagliaroli Alessandro ◽  
Moscatelli Massimiliano

Abstract The possibility is here explored to use an ‘equivalent’ homogeneous configuration to simulate 1D seismic response of heterogeneous engineering-geological bodies when relatively weak seismic impedance contrasts (150 m/s) only exist above the seismic bedrock. This equivalent configuration is obtained by considering an equivalent Vs value the harmonic average of the actual Vs values and a linear combination of G/G 0 and D curves relative to the lithotechnical components present in the actual configuration. To evaluate feasibility of this approach, a wide set of numerical simulations was carried out by randomly generating subsoil layering including sequences of alternating thin layers of geotechnical units ( e.g., sands and clays) each characterized by a characteristic nonlinear curve. Outcomes of these simulations are compared with those provided by considering a single homogeneous layer characterized by equivalent nonlinear curves obtained as a weighted average of the original curves. By comparing the heterogeneous and the homogeneous columns seismic response in terms of amplification factors and fundamental period, the results confirm the possibility to model a 1D column characterized by a generic lithostratigraphic succession with an equivalent one without introducing significative errors that, at least for the studied cases, do not exceed the 6%. This conclusion is substantially confirmed by extending the comparison to a real case, i.e. the 113 m-thick heterogeneous soil profile at Mirandola site (Norther Italy), presented in the last part.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255848
Author(s):  
Long Tan ◽  
Ruifeng Fan ◽  
Huifeng Sun ◽  
Shenglei Guo

Water and nutrient are two critical factors that limit plant growth to spatial-temporal extents. Tree root foraging behavior has not received adequate attention in heterogeneous soil environments in temperate forest under drought pressure. In this study, birch (Betula platyphylla) and larch (Larix olgensis) seedlings were raised in pots in a split-root system with artificially heterogeneous soil environments to study the root foraging response to drought. Potted space was split into two halves where substrates were mixed with fertilizers in 67.5 mg nitrogen (N) plant-1 (N-P2O5-K2O, 14-13-13) to both halves as to create a homogeneous condition. Otherwise, a rate of 135 mg N plant-1 of fertilizers was delivered to a random half to create a heterogeneous condition. Half of seedlings were fully sub-irrigated every three days with the other half received the drought treatment by being watered every six days. Both birch and larch seedlings showed greater net shoot growth and biomass increment in well-watered condition, while root morphology was promoted by drought. Both species placed more fine roots with higher root N concentration in nutrient-enriched patches. In the heterogeneous pattern, birch showed a higher foraging precision assessed by biomass and greater foraging plasticity assessed in morphology and physiology. In contrast, larch seedlings had higher root N concentration in the well-watered condition. Neither species showed a significant response of N utilization to the heterogeneous pattern, but both used more N when water supply was improved. Overall, birch is better at acclimating to heterogeneous soil conditions, but its ability to seize N was lower than larch when drought was alleviated.


2021 ◽  
Vol 25 (6) ◽  
pp. 3041-3052
Author(s):  
Shany Ben Moshe ◽  
Pauline Kessouri ◽  
Dana Erlich ◽  
Alex Furman

Abstract. Breakthrough curves (BTCs) are a valuable tool for qualitative and quantitative examination of transport patterns in porous media. Although breakthrough (BT) experiments are simple, they often require extensive sampling and multi-component chemical analysis. In this work, we examine spectral induced polarization (SIP) signals measured along a soil column during BT experiments in homogeneous and heterogeneous soil profiles. Soil profiles were equilibrated with an NaCl background solution, and then a constant flow of either CaCl2 or ZnCl2 solution was applied. The SIP signature was recorded, and complementary ion analysis was performed on the collected outflow samples. Our results confirm that changes to the pore-water composition, ion exchange processes and profile heterogeneity are detectable by SIP: the real part of the SIP-based BTCs clearly indicated the BT of the non-reactive ions as well as the retarded BT of cations. The imaginary part of the SIP-based curves changed in response to the alteration of ion mobility around the electrical double layer (EDL) and indicated the initiation and the termination of the cation exchange reaction. Finally, both the real and imaginary components of the complex conductivity changed in response to the presence of a coarser textured layer in the heterogeneous profile.


2021 ◽  
Vol 21 (1) ◽  
pp. 5-16
Author(s):  
Hanna Radziuk ◽  
Marcin Świtoniak ◽  
Marcin Nowak

Abstract Soil erodibility is one of the crucial parameters for modelling soil erosion, expressed as the K-factor. The presented study tries to illustrate the spatial variance of K-factor on a local scale through the investigation of soil properties and descriptive spatial analysis utilising GIS tools at microscale in a young hummocky moraine landscape in Northern Poland. The results of the interpolation of K-factor values illustrate their changing from high values in eroded pedons on the tops of hummocks to low values in kettle holes. The middle position is occupied by slightly and non-eroded pedons. The mean weight results were very similar to data that were found on the scale of Europe and Poland. In landscapes with heterogeneous soil cover, there are significant differences in maps based on different approaches to data visualisation. There are advantages and disadvantages to both (1) referring to mean values of the K index for soil contours representing different soil types and (2) interpolating the values obtained from individual points (GIS tool). Interpolation can be used for a thoroughly examined area with a high number of input points, while a map based on mean K index values for soil contours would be more effective in homogeneous areas.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ashley T. Hart ◽  
Morgane Merlin ◽  
Erin Wiley ◽  
Simon M. Landhäusser

When exploring the impact of resource availability on perennial plants, artificial treatments often apply conditions homogeneously across space and time, even though this rarely reflects conditions in natural systems. To investigate the effects of spatially heterogeneous soil moisture on morphological and physiological responses, trembling aspen (Populus tremuloides) saplings were used in a split-pot experiment. Following the division of the root systems, saplings were established for a full year and then subjected to either heterogeneous (portion of the root system exposed to non-lethal drought) or homogeneous (whole root system exposed to non-lethal drought or well-watered) treatments. Above- and belowground growth and non-structural carbohydrate (NSC) reserves (soluble sugars and starch) were measured to determine how allocation of reserves and mass between and within organs changed in response to variation in soil moisture availability. In contrast to saplings in the homogeneous drought treatment, which experienced reduced shoot growth, leaf abscission and fine root loss, saplings exposed to the heterogeneous conditions maintained similar aboveground growth and increased root system allocation compared to well-watered saplings. Interestingly under heterogeneous soil moisture conditions, the portion of the root system that was resource limited had no root dieback and increased carbon reserve concentrations, while the portion of the root system that was not resource limited added new roots (30% increase). Overall, saplings subjected to the heterogeneous soil moisture regime over-compensated belowground, both in mass and NSC reserves. These results indicate that the differential allocation of mass or reserves between above- and belowground organs, but also within the root system can occur. While the mechanisms and processes involved in these patterns are not clear, these responses could be interpreted as adaptations and acclimations to preserve the integrity of the entire sapling and suggests that different portions of plant organs might respond autonomously to local conditions. This study provides further appreciation of the complexity of the mechanisms by which plants manage heterogeneous conditions and offers evidence that spatial and temporal variability of resource availability, particularly belowground, needs to be accounted for when extrapolating and modeling stress responses at larger temporal and spatial scales.


Sign in / Sign up

Export Citation Format

Share Document