scholarly journals Hyers–Ulam Stability of Additive Functional Equation Using Direct and Fixed-Point Methods

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
K. Tamilvanan ◽  
G. Balasubramanian ◽  
Nazek Alessa ◽  
K. Loganathan

In this present work, we obtain the solution of the generalized additive functional equation and also establish Hyers–Ulam stability results by using alternative fixed point for a generalized additive functional equation χ ∑ g = 1 l v g = ∑ 1 ≤ g < h < i ≤ l χ v g + v h + v i − ∑ 1 ≤ g < h ≤ l χ v g + v h − l 2 − 5 l + 2 / 2 ∑ g = 1 l χ v g − χ − v g / 2 . where l is a nonnegative integer with ℕ − 0,1,2,3,4 in Banach spaces.

Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1050 ◽  
Author(s):  
Abdulaziz M. Alanazi ◽  
G. Muhiuddin ◽  
K. Tamilvanan ◽  
Ebtehaj N. Alenze ◽  
Abdelhalim Ebaid ◽  
...  

In this current work, we introduce the finite variable additive functional equation and we derive its solution. In fact, we investigate the Hyers–Ulam stability results for the finite variable additive functional equation in fuzzy normed space by two different approaches of direct and fixed point methods.


Filomat ◽  
2014 ◽  
Vol 28 (9) ◽  
pp. 1753-1771
Author(s):  
Azadi Kenary ◽  
M.H. Eghtesadifard

In this paper, we prove the Hyers-Ulam stability of the following generalized additive functional equation ?1? i < j ? m f(xi+xj/2 + m-2?l=1,kl?i,j) = (m-1)2/2 m?i=1 f(xi) where m is a positive integer greater than 3, in various normed spaces.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Yeol Je Cho ◽  
Reza Saadati ◽  
Javad Vahidi

Using fixed point methods, we prove the generalized Hyers-Ulam stability of homomorphisms inC∗-algebras and LieC∗-algebras and of derivations on non-ArchimedeanC∗-algebras and Non-Archimedean LieC∗-algebras for anm-variable additive functional equation.


2020 ◽  
Vol 9 (11) ◽  
pp. 9179-9186
Author(s):  
P. Agilan ◽  
J.M. Rassias ◽  
V. Vallinayagam

In this paper, we present the Hyers-Ulam stability of generalized additive functional equation in Banach spaces and stability results have been obtained by a classical direct method by various general control functions.


Filomat ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 1833-1851 ◽  
Author(s):  
Choonkil Park ◽  
Dong Shin ◽  
Reza Saadati ◽  
Jung Lee

In [32, 33], the fuzzy stability problems for the Cauchy additive functional equation and the Jensen additive functional equation in fuzzy Banach spaces have been investigated. Using the fixed point method, we prove the Hyers-Ulam stability of the following additive-quadraticcubic-quartic functional equation f(x+2y)+f(x-2y)=4f(x+y)+4f(x-y)-6f(x)+f(2y)+f(-2y)-4f(y)-4f(-y) (1) in fuzzy Banach spaces.


2020 ◽  
Vol 5 (6) ◽  
pp. 5993-6005 ◽  
Author(s):  
K. Tamilvanan ◽  
◽  
Jung Rye Lee ◽  
Choonkil Park ◽  
◽  
...  

2014 ◽  
Vol 64 (1) ◽  
Author(s):  
Dorel Miheţ ◽  
Reza Saadati

AbstractRecently, the authors [MIHEŢ, D.—SAADATI, R.—VAEZPOUR, S. M.: The stability of an additive functional equation in Menger probabilistic φ-normed spaces, Math. Slovaca 61 (2011), 817–826] considered the stability of an additive functional in Menger φ-normed spaces. In this paper, we establish some stability results concerning the cubic, quadratic and quartic functional equations in complete Menger φ-normed spaces via fixed point theory.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Seong Sik Kim ◽  
Ga Ya Kim ◽  
Soo Hwan Kim

We investigate new generalized Hyers-Ulam stability results for -derivations and Lie -algebra homomorphisms on Lie -algebras associated with the additive functional equation:


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
M. Eshaghi Gordji ◽  
H. Azadi Kenary ◽  
H. Rezaei ◽  
Y. W. Lee ◽  
G. H. Kim

By using fixed point methods and direct method, we establish the generalized Hyers-Ulam stability of the following additive-quadratic functional equationf(x+ky)+f(x−ky)=f(x+y)+f(x−y)+(2(k+1)/k)f(ky)−2(k+1)f(y)for fixed integerskwithk≠0,±1in fuzzy Banach spaces.


Sign in / Sign up

Export Citation Format

Share Document