scholarly journals On the Stability of -Derivations and Lie -Algebra Homomorphisms on Lie -Algebras: A Fixed Points Method

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Seong Sik Kim ◽  
Ga Ya Kim ◽  
Soo Hwan Kim

We investigate new generalized Hyers-Ulam stability results for -derivations and Lie -algebra homomorphisms on Lie -algebras associated with the additive functional equation:


2008 ◽  
Vol 2008 ◽  
pp. 1-13 ◽  
Author(s):  
Fridoun Moradlou ◽  
Hamid Vaezi ◽  
Choonkil Park

Using the fixed point method, we prove the generalized Hyers-Ulam stability ofC∗-algebra homomorphisms and of generalized derivations onC∗-algebras for the following functional equation of Apollonius type∑i=1nf(z−xi)=−(1/n)∑1≤i<j≤nf(xi+xj)+nf(z−(1/n2)∑i=1nxi).



Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 76 ◽  
Author(s):  
Yang-Hi Lee ◽  
Gwang Kim

We will prove the generalized Hyers–Ulam stability and the hyperstability of the additive functional equation f(x1 + y1, x2 + y2, …, xn + yn) = f(x1, x2, … xn) + f(y1, y2, …, yn). By restricting the domain of a mapping f that satisfies the inequality condition used in the assumption part of the stability theorem, we partially generalize the results of the stability theorems of the additive function equations.



2003 ◽  
Vol 2003 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Soon-Mo Jung ◽  
Byungbae Kim

The main purpose of this paper is to prove the Hyers-Ulam stability of the additive functional equation for a large class of unbounded domains. Furthermore, by using the theorem, we prove the stability of Jensen's functional equation for a large class of restricted domains.



2014 ◽  
Vol 64 (1) ◽  
Author(s):  
Dorel Miheţ ◽  
Reza Saadati

AbstractRecently, the authors [MIHEŢ, D.—SAADATI, R.—VAEZPOUR, S. M.: The stability of an additive functional equation in Menger probabilistic φ-normed spaces, Math. Slovaca 61 (2011), 817–826] considered the stability of an additive functional in Menger φ-normed spaces. In this paper, we establish some stability results concerning the cubic, quadratic and quartic functional equations in complete Menger φ-normed spaces via fixed point theory.



2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
K. Tamilvanan ◽  
G. Balasubramanian ◽  
Nazek Alessa ◽  
K. Loganathan

In this present work, we obtain the solution of the generalized additive functional equation and also establish Hyers–Ulam stability results by using alternative fixed point for a generalized additive functional equation χ ∑ g = 1 l v g = ∑ 1 ≤ g < h < i ≤ l χ v g + v h + v i − ∑ 1 ≤ g < h ≤ l χ v g + v h − l 2 − 5 l + 2 / 2 ∑ g = 1 l χ v g − χ − v g / 2 . where l is a nonnegative integer with ℕ − 0,1,2,3,4 in Banach spaces.



Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1050 ◽  
Author(s):  
Abdulaziz M. Alanazi ◽  
G. Muhiuddin ◽  
K. Tamilvanan ◽  
Ebtehaj N. Alenze ◽  
Abdelhalim Ebaid ◽  
...  

In this current work, we introduce the finite variable additive functional equation and we derive its solution. In fact, we investigate the Hyers–Ulam stability results for the finite variable additive functional equation in fuzzy normed space by two different approaches of direct and fixed point methods.



2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yang-Hi Lee ◽  
Soon-Mo Jung

We prove a general uniqueness theorem that can be easily applied to the (generalized) Hyers-Ulam stability of the Cauchy additive functional equation, the quadratic functional equation, and the quadratic-additive type functional equations. This uniqueness theorem can replace the repeated proofs for uniqueness of the relevant solutions of given equations while we investigate the stability of functional equations.



2020 ◽  
Vol 9 (11) ◽  
pp. 9179-9186
Author(s):  
P. Agilan ◽  
J.M. Rassias ◽  
V. Vallinayagam

In this paper, we present the Hyers-Ulam stability of generalized additive functional equation in Banach spaces and stability results have been obtained by a classical direct method by various general control functions.



2021 ◽  
Vol 1964 (2) ◽  
pp. 022024
Author(s):  
K Tamilvanan ◽  
B Deepa ◽  
S Muthu selvi ◽  
R Prakash ◽  
R Sathish Kumar


2020 ◽  
Vol 5 (6) ◽  
pp. 5993-6005 ◽  
Author(s):  
K. Tamilvanan ◽  
◽  
Jung Rye Lee ◽  
Choonkil Park ◽  
◽  
...  


Sign in / Sign up

Export Citation Format

Share Document