scholarly journals Experimental Investigation of a Direct Evaporative Cooling System for Year-Round Thermal Management with Solar-Assisted Dryer

2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Sujatha Abaranji ◽  
Karthik Panchabikesan ◽  
Velraj Ramalingam

Building cooling is achieved by the extensive use of air conditioners. These mechanically driven devices provide thermal comfort by deteriorating the environment with increased energy consumption. To alleviate environmental degradation, the need for energy-efficient and eco-friendly systems for building cooling becomes essential. Evaporative cooling, a typical passive cooling technique, could meet the energy demand and global climatic issues. In conventional direct evaporative cooling, the sensible cooling of air is achieved by continuous water circulation over the cooling pad. Despite its simple operation, the problem of the pad material and water stagnation in the sump limits its usage. Moreover, the continuous pump operation increases the electrical energy consumption. In the present work, a porous material is used as the water storage medium eliminating the pump and sump. An experimental investigation is performed on the developed setup, and experiments are conducted for three different RH conditions (low, medium, and high) to assess the porous material’s ability as a cooling medium. Cooling capacity, effectiveness, and water evaporation rate are determined to evaluate the direct evaporative cooling system’s performance. The material that replaces the pump and sump is vermicompost due to its excellent water retention characteristics. There is no necessity to change material each time. However, the vermicompost is regenerated at the end of the experiment using a solar dryer. The passing of hot air over the vermicompost also avoids mould spores’ transmission, if any, present through the air. The results show that vermicompost produces an average temperature drop of 9.5°C during low RH conditions. Besides, vermicompost helps with the energy savings of 21.7% by eliminating the pump. Hence, vermicompost could be an alternate energy-efficient material to replace the pad-pump-sump of the conventional evaporative cooling system. Further, if this direct evaporative cooling system is integrated with solar-assisted drying of vermicompost, it is possible to provide a clean and sustainable indoor environment. This system could pave the way for year-round thermal management of building cooling applications with environmental safety.

2003 ◽  
Vol 2 (2) ◽  
Author(s):  
J. R. Camargo ◽  
C. D. Ebinuma ◽  
S. Cardoso

Air conditioning systems are responsible for increasing men's work efficiency as well for his comfort, mainly in the warm periods of the year. Currently, the most used system is the mechanical vapor compression system. However, in many cases, evaporative cooling system can be an economical alternative to replace the conventional system, under several conditions, or as a pre-cooler in the conventional systems. It leads to a reduction in the operational cost, comparing with systems using only mechanical refrigeration. Evaporative cooling operates using induced processes of heat and mass transfer, where water and air are the working fluids. It consists in water evaporation, induced by the passage of an air flow, thus decreasing the air temperature. This paper presents the basic principles of the evaporative cooling process for human thermal comfort, the principles of operation for the direct evaporative cooling system and the mathematical development of the equations of thermal exchanges, allowing the determination of the effectiveness of saturation. It also presents some results of experimental tests in a direct evaporative cooler that take place in the Air Conditioning Laboratory at the University of Taubaté Mechanical Engineering Department, and the experimental results are used to determinate the convective heat transfer coefficient and to compare with the mathematical model.


2021 ◽  
Vol 27 (4) ◽  
pp. 1-15
Author(s):  
Abbas Magid Taleb ◽  
Mohammed Abdulraouf Nima

An experimental study was carried out for an evaporative cooling system in order to investigate the effect of using an aluminum pad coated with fabric polyester. In the present work, it was considered to use a new different type of cooling medium and test its performance during the change in the wet-bulb temperature and dry-bulb temperature of the supply air outside of the pad, the relative humidity of the supply air, the amount of air supplied (300-600) CFM and also the change of the amount of circulated water (1.75, 2.5, 4.5) liter per minute. A decrease in the WBT of the air was obtained, whereas the WBT of the air entering the pad was 26.5 . In contrast, the WBT of the outside air had reached 23  even though evaporative cooling is an adiabatic process which makes the WBT of the air that comes out of the pad is equal to the entering air WBT. The decrease in DBT is by changing the amount of air and water passing through the aluminum pad, whereas the DBT of the air entering the pad was 45 , while the DBT of the outside air had reached 29 . Also, an essential thing was obtained as this rise in the relative humidity of the air is very small 57%RH compared to the conventional pads, and this gives a positive impression as the air supplied from this pad has less moisture and its ability to carry moisture is much higher than that of air supplied from other pads. This gives a positive impression because the air supplied from this pad has lower humidity and its ability to hold moisture much higher than the air supplied from other traditional pads.


2003 ◽  
Vol 2 (2) ◽  
pp. 30 ◽  
Author(s):  
J. R. Camargo ◽  
C. D. Ebinuma ◽  
S. Cardoso

Air conditioning systems are responsible for increasing men's work efficiency as well for his comfort, mainly in the warm periods of the year. Currently, the most used system is the mechanical vapor compression system. However, in many cases, evaporative cooling system can be an economical alternative to replace the conventional system, under several conditions, or as a pre-cooler in the conventional systems. It leads to a reduction in the operational cost, comparing with systems using only mechanical refrigeration. Evaporative cooling operates using induced processes of heat and mass transfer, where water and air are the working fluids. It consists in water evaporation, induced by the passage of an air flow, thus decreasing the air temperature. This paper presents the basic principles of the evaporative cooling process for human thermal comfort, the principles of operation for the direct evaporative cooling system and the mathematical development of the equations of thermal exchanges, allowing the determination of the effectiveness of saturation. It also presents some results of experimental tests in a direct evaporative cooler that take place in the Air Conditioning Laboratory at the University of Taubaté Mechanical Engineering Department, and the experimental results are used to determinate the convective heat transfer coefficient and to compare with the mathematical model.


Author(s):  
I Nyoman Suprapta Winaya ◽  
Hendra Wijaksana ◽  
Made Sucipta ◽  
Ainul Ghurri

The high energy consumption of compressor based cooling system has prompted the researchers to study and develop non-compressor based cooling system that less energy consumption, less environment damaging but still has high enough cooling performances. Indirect and semi indirect evaporative cooling system is the feasible non-compressor based cooling systems that can reach the cooling performance required. This two evaporative cooling system has some different in construction, porous material used, airflow scheme and secondary air cooling method used for various applications. This paper would report the cooling performances achieved by those two cooling system in terms of cooling efficiency, cooling capacity, wet bulb effectiveness, dew point effectiveness, and temperature drop. Porous material used in indirect and semi-indirect evaporative cooling would be highlighted in terms of their type, size, thickness and any other feature. The introduction of nanopore skinless bamboo potency as a new porous material for either indirect or semi-indirect evaporative cooling would be described. In the future study of nanopore skinless bamboo, a surface morphology and several hygrothermal test including sorption, water vapor transmission, thermal conductivity test would be applied, before it utilize as a new porous material for direct or semi indirect evaporative cooling.


Sign in / Sign up

Export Citation Format

Share Document