scholarly journals A Multidepth Load-Balance Scheme for Clusters of Congested Cells in Ultradense Cellular Networks

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Wei-Kuang Lai ◽  
Ya-Ju Yu ◽  
Pei-Lun Tsai ◽  
Meng-Han Shen

Densely deploying small cells will be a solution to provide explosive data requirements in fifth-generation networks. Because users often cluster together in popular locations of an urban area, congested small cells in the popular sites are also gathered. Traditional load balancing schemes generally only consider neighboring cells when offloading users are not suitable for clusters of overloaded cells. This paper considers groups of overloaded cells in the load balancing problem. The objective is to maximize the quality-of-service satisfaction ratio. To solve the problem, we propose a multidepth offloading algorithm with the consideration of the radio resource allocation. The proposed multidepth offloading algorithm can be applied no matter that congested small cells are gathered or not. Compared with a previous offloading algorithm and a baseline, the simulation results show that our proposed algorithm can increase 16% QoS satisfaction ratio in a real user distribution and 13% QoS satisfaction ratio in a clustered user placement.

Author(s):  
Phudit Ampririt ◽  
Ermioni Qafzezi ◽  
Kevin Bylykbashi ◽  
Makoto Ikeda ◽  
Keita Matsuo ◽  
...  

The fifth generation (5G) network is expected to be flexible to satisfy quality of service (QoS) requirements, and the software-defined network (SDN) with network slicing will be a good approach for admission control. In this paper, the authors present and compare two fuzzy-based schemes to evaluate the QoS (FSQoS). They call these schemes FSQoS1 and FSQoS2. The FSQoS1 considers three parameters: slice throughput (ST), slice delay (SD), and slice loss (SL). In FSQoS2, they consider as an additional parameter the slice reliability (SR). So, FSQoS2 has four input parameters. They carried out simulations for evaluating the performance of the proposed schemes. From simulation results, they conclude that the considered parameters have different effects on the QoS performance. The FSQoS2 is more complex than FSQoS1, but it has a better performance for evaluating QoS. When ST and SR are increasing, the QoS parameter is increased. But, when SD and SL are increasing, the QoS is decreased. When ST is 0.1, SD is 0.1, SL is 0.1, and the QoS is increased by 32.02% when SR is increased from 0.3 to 0.8.


Author(s):  
Mugen Peng ◽  
Yaohua Sun ◽  
Chengdan Sun ◽  
Manzoor Ahmed

To optimize radio resource allocation, the game theory is utilized as a powerful tool because its characteristic can be adaptive to the distribution characteristics of in heterogeneous small cell networks (HSCNs). This chapter summarizes the recent achievements for the game theory based radio resource allocation in HSCNs, where macro base stations (MBSs) and dense small cell base stations (SBSs) share the same frequency spectrum and interfere with each other. Two kinds of game models are introduced to optimize the radio resource allocation, namely the non-cooperative Stackelberg and the cooperative coalition. System models, optimization problem formulation, problem solution, and simulation results for these two kinds of game models are presented. Particularly, the Stackelberg models for HSCNs are presented with the Stackelberg equilibrium and the closed-form expressions. The coalition formations for traditional HCSNs, cloud small cell networks, and heterogeneous cloud small cell networks are introduced. Simulation results are shown to demonstrate the proposed game theory based radio resource optimization strategies converged and efficient.


Author(s):  
K. N. Rama Mohan Babu ◽  
K.N. Balasubramanya Murthy ◽  
G.V. Pavithra ◽  
K.R Mamatha

Handling of emergency calls in wireless cellular networks is one of the major issues. The main objective here is to improve quality of service by efficient channel utilization. In this paper, a new scheme called probabilistic emergency prioritization scheme (PEPS) is proposed which provides highest priority for emergency calls. The proposed method minimizes the dropping or blocking of emergency calls even if the number of emergency calls are more than 25% of the calls. Monte Carlo simulation results show that the proposed scheme works better than the existing adaptive probabilistic scheduling scheme (APS).


PLoS ONE ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. e0210310 ◽  
Author(s):  
Maharazu Mamman ◽  
Zurina Mohd Hanapi ◽  
Azizol Abdullah ◽  
Abdullah Muhammed

Sign in / Sign up

Export Citation Format

Share Document