network slicing
Recently Published Documents


TOTAL DOCUMENTS

869
(FIVE YEARS 664)

H-INDEX

30
(FIVE YEARS 13)

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 222
Author(s):  
Tomasz Wichary ◽  
Jordi Mongay Batalla ◽  
Constandinos X. Mavromoustakis ◽  
Jerzy Żurek ◽  
George Mastorakis

This paper focuses on the security challenges of network slice implementation in 5G networks. We propose that network slice controllers support security by enabling security controls at different network layers. The slice controller orchestrates multilevel domains with resources at a very high level but needs to understand how to define the resources at lower levels. In this context, the main outstanding security challenge is the compromise of several resources in the presence of an attack due to weak resource isolation at different levels. We analysed the current standards and trends directed to mitigate the vulnerabilities mentioned above, and we propose security controls and classify them by efficiency and applicability (easiness to develop). Security controls are a common way to secure networks, but they enforce security policies only in respective areas. Therefore, the security domains allow for structuring the orchestration principles by considering the necessary security controls to be applied. This approach is common for both vendor-neutral and vendor-dependent security solutions. In our classification, we considered the controls in the following fields: (i) fair resource allocation with dynamic security assurance, (ii) isolation in a multilayer architecture and (iii) response to DDoS attacks without service and security degradation.


IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Kyungjoo Suh ◽  
Sunwoo Kim ◽  
Yongjun Ahn ◽  
Seungnyun Kim ◽  
Hyungyu Ju ◽  
...  

2022 ◽  
pp. 621-639
Author(s):  
Haorui Yang ◽  
Tricci So ◽  
Yang Xu
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 229
Author(s):  
Lorena Chinchilla-Romero ◽  
Jonathan Prados-Garzon ◽  
Pablo Ameigeiras ◽  
Pablo Muñoz ◽  
Juan M. Lopez-Soler

Fifth Generation (5G) is expected to meet stringent performance network requisites of the Industry 4.0. Moreover, its built-in network slicing capabilities allow for the support of the traffic heterogeneity in Industry 4.0 over the same physical network infrastructure. However, 5G network slicing capabilities might not be enough in terms of degree of isolation for many private 5G networks use cases, such as multi-tenancy in Industry 4.0. In this vein, infrastructure network slicing, which refers to the use of dedicated and well isolated resources for each network slice at every network domain, fits the necessities of those use cases. In this article, we evaluate the effectiveness of infrastructure slicing to provide isolation among PLs in an industrial private 5G network. To that end, we develop a queuing theory-based model to estimate the E2E mean packet delay of the infrastructure slices. Then, we use this model to compare the E2E mean delay for two configurations, i.e., dedicated infrastructure slices with segregated resources for each PL against the use of a single shared infrastructure slice to serve the performance-sensitive traffic from PLs. Also we evaluate the use of TSN against bare Ethernet to provide layer 2 connectivity among the 5G system components. We use a complete and realistic setup based on experimental and simulation data of the scenario considered. Our results support the effectiveness of infrastructure slicing to provide isolation in performance among the different slices. Then, using dedicated slices with segregated resources for each PL might reduce the number of the production downtimes and associated costs as the malfunctioning of a PL will not affect the network performance perceived by the performance-sensitive traffic from other PLs. Last, our results show that, besides the improvement in performance, TSN technology truly provides full isolation in the transport network compared to standard Ethernet thanks to traffic prioritization, traffic regulation, and bandwidth reservation capabilities.


Author(s):  
Jyrki T. J. Penttinen

6G represents standardized communication systems that will be commercially available in 2030s. Even if the initial 5G networks, basing on the 3GPP Release 15, have hardly started become commercially available gradually as of 2019 and their large-scale deployment is still years away, industry is already keen to envision the justification and performance of the forthcoming generation. While there are no concrete 6G standards produced at this stage, their planning will benefit from realistic indications of the requirements and type of usage. The task is not straightforward as users, including a variety of verticals with their rather different communication environments, are sometimes not capable of expressing their future needs in technical terms nor industry might be able to prognosticate the demand that has not yet equivalence in preceding systems. This paper analyses some of the most important current visions of key standardization bodies and assesses indications of the industry for the potential requirements, service types, use cases, and architectural and functional models that can serve as a building block for the actual realization of the visions. This paper also presents means that can be applied in further interpretation and assessment of the vertical needs and priorities, with examples reflecting the benefits of Network Slice requirements that the GSMA North Americas Network Slicing Taskforce studied for foreseen near future environment and that may be extended to be utilized also in exploration of 6G requirements.


Sign in / Sign up

Export Citation Format

Share Document