scholarly journals Compositions of Cu-(Fe)-Sulfides in the 109 Reduced Granite-Related Cu Deposit, Xinjiang, Northwest China: Implications to the Characteristics of Ore-Forming Fluids

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Rui Liu ◽  
Genwen Chen ◽  
Jianxing Yang

In general, porphyry Cu deposit is related to the highly oxidized ore-forming system. However, there are many porphyry Cu deposits that are related to the reduced ore-forming system, and the ore-forming characteristics of reduced porphyry Cu deposit are unclear. Cu-(Fe)-sulfides are the main Cu-hosting minerals in porphyry Cu deposits and are also economically important, and the composition of Cu-(Fe)-sulfides has closely relationship with ore-forming characteristics. In this study, concentration data obtained via laser ablation inductively coupled plasma mass spectrometry are reported for chalcopyrite, bornite, and chalcocite from the 109 porphyry Cu deposit formed in a reduced granite-related mineralization system in western Tianshan, Xinjiang, northwest China. The results show that the chalcopyrite hosts several trace elements including Zn, Ge, Se, In, and Sn; the bornite hosts Mo, Ag, Zn, Se, and Bi; and the chalcocite hosts Mo, Ag, Zn, Sn, Se, and Bi. The smooth time-resolved depths profiles and limited variations of trace element concentrations in these sulfides suggest that their presence is isomorphic. The microstructures of the chalcopyrite and bornite were observed by high-resolution transmission electron microscopy. Their lattices are neatly arranged, also indicating that the trace elements exist mainly as isomorphisms in the chalcopyrite and bornite. Ge, Sn, and In are hosted in the chalcopyrite but absent in bornite and chalcocite, indicating that chalcopyrite has a high potential for hosting these elements. Ge and Sn are preferentially hosted in the chalcopyrite, possibly due to relatively high temperatures and low oxygen fugacity during its formation. Indium is preferentially hosted in the chalcopyrite, possibly due to the In2+ substitution for Fe2+ controlled by Goldschmidt’s rules, which state that substitution occurs between a substituent and host owing to similarities in their radii and charges. However, the concentration of Ag is low in chalcopyrite but significantly high in bornite and chalcocite, indicating that this element is preferentially hosted in the latter two minerals. The abundance of Ag, a low-temperature element, in Cu-(Fe)-sulfides may largely be dependent on temperature. The Au content is below the minimum level of detection in all sulfides, which is obviously different from the classic porphyry copper deposits. In addition, the concentrations of Zn, Ge, As, Sb, and Te in the chalcopyrite and those of Zn, Se, As, Sb, and Bi in the bornite from the 109 porphyry Cu deposit show obvious differences from those of classic porphyry Cu deposits. Therefore, some elements in Cu-(Fe)-sulfides can be used as indicators of ore-forming oxygen fugacity. Bornite and chalcocite are generally enriched in Ag, indicating that the mining of porphyry Cu deposits may be concerned with the precious metal Ag in bornite and chalcocite. In addition, chalcopyrite may host sufficient Se and Zn, and bornite and chalcocite could host sufficient Se, Zn, and Bi, suggesting that sulfides may be hosts for deleterious elements.

2017 ◽  
Vol 112 (7) ◽  
pp. 1719-1746 ◽  
Author(s):  
Jia Chang ◽  
Jian-Wei Li ◽  
David Selby ◽  
Jia-Cheng Liu ◽  
Xiao-Dong Deng

Abstract The Yulong porphyry Cu-Mo deposit, the third largest porphyry Cu deposit in China, contains proven reserves of > 6.5 million metric tons (Mt) Cu and 0.4 Mt Mo. Previous radiometric dating studies have provided numerous ages for this deposit, but the timing and duration of the process governing the deposition of Cu and Mo remains not well constrained. In this paper, we first document multiple stages of mineralization and hydrothermal alteration associated with distinct magmatic pulses at Yulong by field and textural relationships, and then present high-precision molybdenite Re-Os ages of 14 quartz-molybdenite ± chalcopyrite veins representing these stages to precisely constrain the timing and duration of Cu-Mo mineralization. The ore-hosting Yulong composite stock consists of three successive porphyry intrusions: (1) monzonitic granite porphyry (MGP), (2) K-feldspar granite porphyry (KGP), and (3) quartz albite porphyry (QAP). The vein formation, Cu-Mo mineralization, and ore-related alteration are grouped into early, transitional, and late stages with respect to the intrusive history. The first two porphyry intrusions are followed by cyclical sequences of veining that are mainly associated with potassic alteration and have formed (1) ME vein/USTT, (2) EBE/T veins, (3) A1E/T veins, (4) A2E/BT veins, and (5) A3E/T veins. A2E/BT and A3E/T veins of the early and transitional stages are dominated by quartz and chalcopyrite ± pyrite, respectively, and represent the main Cu-Mo mineralization events. More than 80% of Cu and Mo at Yulong were deposited in the early stage with the remainder being formed in the transitional stage. The late-stage pyrite-quartz veins (DL), which are characterized by sericitic alteration halos, postdate the intrusion of QAP dikes and have no economic significance. Molybdenite Re-Os ages of A2E and BT veins indicate that sulfide deposition at Yulong was episodic over a prolonged history lasting over 5.13 ± 0.23 m.y. (1σ). However, the bulk Cu-Mo ores formed in a shorter time interval of 1.36 ± 0.24 m.y. (1σ) with most Cu precipitated in a more restricted timespan of 0.82 ± 0.24 m.y. (1σ) in the early stage. These results, combined with geochronologic data from porphyry copper deposits elsewhere, confirm that multiple magmatic-hydrothermal pulses with a lifespan of tens to hundreds of thousands of years are sufficient to form a giant porphyry copper deposit. Factors such as metal concentration, volume, and focusing efficiency of ore-forming fluids could have played important roles in producing a giant porphyry Cu deposit regardless of a short- or long-lived magmatic-hydrothermal system.


2019 ◽  
Vol 11 (14) ◽  
pp. 1729 ◽  
Author(s):  
Mengjuan Wu ◽  
Kefa Zhou ◽  
Quan Wang ◽  
Jinlin Wang

Identifying hydrothermal zoning pattern associated with porphyry copper deposit is important for indicating its economic potential. Traditional approaches like systematic sampling and conventional geological mapping are time-consuming and labor extensive, and with limitations for providing small scale information. Recent developments suggest that remote sensing is a powerful tool for mapping and interpreting the spatial pattern of porphyry Cu deposit. In this study, we integrated in situ spectral measurement taken at the Yudai copper deposit in the Kalatag district, northwestern China, information obtained by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), as well as the spectra of samples (hand-specimen) measured using an Analytical Spectral Device (ASD) FieldSpec4 high-resolution spectrometer in laboratory, to map the hydrothermal zoning pattern of the copper deposit. Results proved that the common statistical approaches, such as relative band depth and Principle Component Analysis (PCA), were unable to identify the pattern accurately. To address the difficulty, we introduced a curve-fitting technique for ASTER shortwave infrared data to simulate Al(OH)-bearing, Fe/Mg(OH)-bearing, and carbonate minerals absorption features, respectively. The results indicate that the absorption feature parameters can effectively locate the ore body inside the research region, suggesting the absorption feature parameters have great potentials to delineate hydrothermal zoning pattern of porphyry Cu deposit. We foresee the method being widely used in the future.


2017 ◽  
Vol 206 ◽  
pp. 343-363 ◽  
Author(s):  
Chan-chan Zhang ◽  
Wei-dong Sun ◽  
Jin-tuan Wang ◽  
Li-peng Zhang ◽  
Sai-jun Sun ◽  
...  

Author(s):  
Yin-Hong Wang ◽  
Fang-Fang Zhang ◽  
Chun-Ji Xue ◽  
Jia-Jun Liu ◽  
Zhao-Chong Zhang ◽  
...  

Abstract The Tuwu porphyry Cu deposit is located in the northern segment of the Jueluotage metallogenic belt in Eastern Tianshan, on the southern margin of the Central Asian orogenic belt, Xinjiang, northwest China. Tuwu is hosted by diorite porphyry and tonalite porphyry intrusions, which intruded volcanic rocks of the Carboniferous Qi’eshan Group. Four stages (I-IV) of hydrothermal activity have been identified. Chalcopyrite is the dominant ore mineral and mainly occurs in vein stages II (quartz-chalcopyrite-pyrite ± sericite ± bornite ± enargite veins with phyllic halos) and III (quartz-molybdenite-chalcopyrite ± pyrite ± chlorite ± epidote veins). Re-Os dating of molybdenite samples yielded an isochron age of 335.6 ± 4.1 Ma (2σ, mean square of weighted deviates = 0.15, n = 8). Silicon, oxygen, and carbon stable isotope compositions of quartz and calcite provide evidence for predominantly magmatic contributions with a late meteoric water component at Tuwu. Chalcopyrite samples from stages I and III record a narrow range of bulk δ34S values between –3.9 and 0.4‰, whereas pyrite samples from stages I to IV show decreasing δ34S values from 1.7 to 0.2‰. Chalcopyrite has 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios similar to those of porphyry intrusions, and Pb isotope data from sulfide samples display a positive trend transecting the growth curves of crustal lead. The ore-forming components (metals and sulfur) were sourced from a mantle-derived magmatic reservoir with some upper crustal components in a subduction-related arc setting. Plagioclase compositions in the porphyry intrusions are consistent with magmatic H2O contents of ~7 wt %. Copper sulfides in the high-grade phyllic alteration zones at Tuwu are characterized by elevated δ65Cu values consistent with deposits from oxidized and hydrous magmatic-hydrothermal fluids, whereas lower δ65Cu values and low copper grades correspond to the potassic alteration zones. Recognition of copper isotope zonation patterns at Tuwu has potential applications in the exploration of porphyry Cu deposits.


Sign in / Sign up

Export Citation Format

Share Document