scholarly journals An Intelligent Evaluation Method to Analyze the Competitiveness of Airlines

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jun Zhao ◽  
Xumei Chen

An intelligent evaluation method is presented to analyze the competitiveness of airlines. From the perspective of safety, service, and normality, we establish the competitiveness indexes of traffic rights and the standard sample base. The self-organizing mapping (SOM) neural network is utilized to self-organize and self-learn the samples in the state of no supervision and prior knowledge. The training steps of high convergence speed and high clustering accuracy are determined based on the multistep setting. The typical airlines index data are utilized to verify the effect of the self-organizing mapping neural network on the airline competitiveness analysis. The simulation results show that the self-organizing mapping neural network can accurately and effectively classify and evaluate the competitiveness of airlines, and the results have important reference value for the allocation of traffic rights resources.

2014 ◽  
Vol 563 ◽  
pp. 308-311 ◽  
Author(s):  
Yu Lian Jiang

For a water polo ball game there are multiple water polos and multiple robotic fishes in each team, seeking a reasonable task allocation plan is the key point to win the game. To resolve the problem, this paper proposed a multi-target task allocation method based on the Self-organizing map (SOM) neural network. This method takes the position of the water polos as the input vector, competes and compares the position of the water polos and robotic fishes, outputs the corresponding robotic fish of each water polo. The robotic fish will move toward the target water polo when the weight was adjusted, and will finally reach the target water polo. Simulations show that the score of the team using this method is higher than another team. The results prove the correctness and reliability of this method.


2012 ◽  
Vol 7 (47) ◽  
pp. 6357-6362 ◽  
Author(s):  
Pilarski Krzysztof ◽  
Boniecki Piotr ◽  
Slosarz Piotr ◽  
Dach Jacek ◽  
Boniecka Piekarska Hanna ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5833
Author(s):  
Ching-Han Chen ◽  
Guan-Wei Lan ◽  
Ching-Yi Chen ◽  
Yen-Hsiang Huang

Stereo vision utilizes two cameras to acquire two respective images, and then determines the depth map by calculating the disparity between two images. In general, object segmentation and stereo matching are some of the important technologies that are often used in establishing stereo vision systems. In this study, we implement a highly efficient self-organizing map (SOM) neural network hardware accelerator as unsupervised color segmentation for real-time stereo imaging. The stereo imaging system is established by pipelined, hierarchical architecture, which includes an SOM neural network module, a connected component labeling module, and a sum-of-absolute-difference-based stereo matching module. The experiment is conducted on a hardware resources-constrained embedded system. The performance of stereo imaging system is able to achieve 13.8 frames per second of 640 × 480 resolution color images.


2009 ◽  
Vol 18 (08) ◽  
pp. 1353-1367 ◽  
Author(s):  
DONG-CHUL PARK

A Centroid Neural Network with Weighted Features (CNN-WF) is proposed and presented in this paper. The proposed CNN-WF is based on a Centroid Neural Network (CNN), an effective clustering tool that has been successfully applied to various problems. In order to evaluate the importance of each feature in a set of data, a feature weighting concept is introduced to the Centroid Neural Network in the proposed algorithm. The weight update equations for CNN-WF are derived by applying the Lagrange multiplier procedure to the objective function constructed for CNN-WF in this paper. The use of weighted features makes it possible to assess the importance of each feature and to reject features that can be considered as noise in data. Experiments on a synthetic data set and a typical image compression problem show that the proposed CNN-WF can assess the importance of each feature and the proposed CNN-WF outperforms conventional algorithms including the Self-Organizing Map (SOM) and CNN in terms of clustering accuracy.


2014 ◽  
Vol 140 (2) ◽  
pp. 05014001 ◽  
Author(s):  
Yang Gao ◽  
Zhe Feng ◽  
Yang Wang ◽  
Jin-Long Liu ◽  
Shuang-Cheng Li ◽  
...  

2003 ◽  
Vol 13 (02) ◽  
pp. 119-127 ◽  
Author(s):  
Antonio Carlos Padoan ◽  
Guilherme de A. Barreto ◽  
Aluizio F. R. Araújo

In this paper we proposed an unsupervised neural architecture, called Temporal Parametrized Self Organizing Map (TEPSOM), capable of learning and reproducing complex robot trajectories and interpolating new states between the learned ones. The TEPSOM combines the Self-Organizing NARX (SONARX) network, responsible for coding the temporal associations of the robotic trajectory, with the Parametrized Self-Organizing (PSOM) network, responsible for an efficient interpolation mechanism acting on the SONARX neurons. The TEPSOM network is used to model the inverse kinematics of the PUMA 560 robot during the execution of trajectories with repeated states. Simulation results show that the TEPSOM is more accurate than the SONARX in the reproduction of the learned trajectories.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xinmei Zhang

Music is an indispensable part of our life and study and is one of the most important forms of multimedia applications. With the development of deep learning and neural network in recent years, how to use cutting-edge technology to study and apply music has become a research hotspot. Music waveform is not only the main form of music frequency but also the basis of music feature extraction. This paper first designs a method of note extraction based on the fast Fourier transform principle of the audio signal packet route under the self-organizing map (SOM neural network) which can accurately extract the musical features of the note, such as amplitude, loudness, period, and so on. Secondly, the audio segments are divided into summary by adding window moving matching method, and the music features such as amplitude, loudness, and period of each bar are obtained according to the performance of audio signal in each bar. Finally, according to the similarity of the audio music theory of the adjacent summary of each bar, the audio segments are divided, and the music features of each segment are obtained. The traditional recurrent neural network (RNN) is improved, and the SOM neural network is used to recognize the audio emotion features. The final experimental results show that the proposed method based on SOM neural network and big data can effectively extract and analyze music waveform features. Compared with previous studies, this paper creatively proposed a new algorithm, which can more accurately and quickly extract and analyze the data sound waveform, and used SOM neural network to analyze the emotion model contained in music for the first time.


Sign in / Sign up

Export Citation Format

Share Document