map segmentation
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 3)

2021 ◽  
Vol 10 (12) ◽  
pp. 826
Author(s):  
Mohammad Naser Lessani ◽  
Jiqiu Deng ◽  
Zhiyong Guo

Multiple geographical feature label placement (MGFLP) is an NP-hard problem that can negatively influence label position accuracy and the computational time of the algorithm. The complexity of such a problem is compounded as the number of features for labeling increases, causing the execution time of the algorithms to grow exponentially. Additionally, in large-scale solutions, the algorithm possibly gets trapped in local minima, which imposes significant challenges in automatic label placement. To address the mentioned challenges, this paper proposes a novel parallel algorithm with the concept of map segmentation which decomposes the problem of multiple geographical feature label placement (MGFLP) to achieve a more intuitive solution. Parallel computing is then utilized to handle each decomposed problem simultaneously on a separate central processing unit (CPU) to speed up the process of label placement. The optimization component of the proposed algorithm is designed based on the hybrid of discrete differential evolution and genetic algorithms. Our results based on real-world datasets confirm the usability and scalability of the algorithm and illustrate its excellent performance. Moreover, the algorithm gained superlinear speedup compared to the previous studies that applied this hybrid algorithm.


Author(s):  
Li Zhaoying ◽  
Shi Ruoling ◽  
Zhang Zhao

Due to the complexity of map modeling, the massive computation and high redundancy of the traditional A* algorithm will greatly reduce the efficiency of pathfinding, resulting in huge performance consumption. Meanwhile, limited by neighborhood search strategy in grid map, the traditional A* algorithm is actually unable to achieve the optimal path in the global sense. To solve these problems, this paper proposes an improved A* algorithm based on graph preprocessing. First, the free space on the map was decomposed into several polygon regions using the improved convex decomposition method based on Maklink. Then, each region was coded into feature nodes according to A* algorithm. Finally, an optimal region passage was found based on the principle of A* algorithm, in which the global optimal path solution was obtained. Compared with the traditional A* algorithm and other classical path planning algorithms, the proposed algorithm has significant advantages in planning speed, path cost, stability, and completeness.


2021 ◽  
pp. 693-707
Author(s):  
Joseph Chazalon ◽  
Edwin Carlinet ◽  
Yizi Chen ◽  
Julien Perret ◽  
Bertrand Duménieu ◽  
...  
Keyword(s):  

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 101530-101542
Author(s):  
Farzin Foroughi ◽  
Jikai Wang ◽  
Alireza Nemati ◽  
Zonghai Chen ◽  
Haoyuan Pei

Author(s):  
Yizi Chen ◽  
Edwin Carlinet ◽  
Joseph Chazalon ◽  
Clément Mallet ◽  
Bertrand Duménieu ◽  
...  

2020 ◽  
Vol 1 (4) ◽  
pp. 125-134
Author(s):  
Pawan Rachee

The images that have been taken from space satellites are described by satellite imagery. The presence of the earth's surface is detected by remote sensing. Normally the source of the satellite image is barely seen, because many points in the sky are obscured with cloud shadows. Therefore, one of the most important and ubiquitous tasks in image analysis is segmentation. Segmentation is the method of dividing a image into a collection of specific regions that vary in some essential qualitative or quantitative manner. In this paper we will focus on a method for segmenting images that was developed   Three different methods to detect the location of the satellite images have been studied, implemented, and tested; these are based on Chan-Vese and saliency map segmentation, and multi-resolution segmentation to obtain a proper object segmentation. In this study, the combination of the proposed segmentation automatic detection and image enhancement technique has been performed to reduce the noise of the original image. In addition, the Bilateral filter, and histogram equalization are used in these proposed techniques. Experimental results demonstrate that the suggested method can precisely extract the objective of Amedi site from the satellite images with difficult backgrounds and overlapping regions.


Sign in / Sign up

Export Citation Format

Share Document