scholarly journals Saliency Detection via the Improved Hierarchical Principal Component Analysis Method

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Yuantao Chen ◽  
Jiajun Tao ◽  
Qian Zhang ◽  
Kai Yang ◽  
Xi Chen ◽  
...  

Aiming at the problems of intensive background noise, low accuracy, and high computational complexity of the current significant object detection methods, the visual saliency detection algorithm based on Hierarchical Principal Component Analysis (HPCA) has been proposed in the paper. Firstly, the original RGB image has been converted to a grayscale image, and the original grayscale image has been divided into eight layers by the bit surface stratification technique. Each image layer contains significant object information matching the layer image features. Secondly, taking the color structure of the original image as the reference image, the grayscale image is reassigned by the grayscale color conversion method, so that the layered image not only reflects the original structural features but also effectively preserves the color feature of the original image. Thirdly, the Principal Component Analysis (PCA) has been performed on the layered image to obtain the structural difference characteristics and color difference characteristics of each layer of the image in the principal component direction. Fourthly, two features are integrated to get the saliency map with high robustness and to further refine our results; the known priors have been incorporated on image organization, which can place the subject of the photograph near the center of the image. Finally, the entropy calculation has been used to determine the optimal image from the layered saliency map; the optimal map has the least background information and most prominently saliency objects than others. The object detection results of the proposed model are closer to the ground truth and take advantages of performance parameters including precision rate (PRE), recall rate (REC), and F-measure (FME). The HPCA model’s conclusion can obviously reduce the interference of redundant information and effectively separate the saliency object from the background. At the same time, it had more improved detection accuracy than others.

Author(s):  
Dongjing Shan ◽  
Chao Zhang

In this paper, we propose a prior fusion and feature transformation-based principal component analysis (PCA) method for saliency detection. It relies on the inner statistics of the patches in the image for identifying unique patterns, and all the processes are done only once. First, three low-level priors are incorporated and act as guidance cues in the model; second, to ensure the validity of PCA distinctness model, a linear transform for the feature space is designed and needs to be trained; furthermore, an extended optimization framework is utilized to generate a smoothed saliency map based on the consistency of the adjacent patches. We compare three versions of our model with seven previous methods and test them on several benchmark datasets. Different kinds of strategies are adopted to evaluate the performance and the results demonstrate that our model achieves the state-of-the-art performance.


2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740040
Author(s):  
Biao Yang ◽  
Jinmeng Cao ◽  
Ling Zou

Robust principal component analysis (RPCA) decomposition is widely applied in moving object detection due to its ability in suppressing environmental noises while separating sparse foreground from low rank background. However, it may suffer from constant punishing parameters (resulting in confusion between foreground and background) and holistic processing of all input frames (leading to bad real-time performance). Improvements to these issues are studied in this paper. A block-RPCA decomposition approach was proposed to handle the confusion while separating foreground from background. Input frame was initially separated into blocks using three-frame difference. Then, punishing parameter of each block was computed by its motion saliency acquired based on selective spatio-temporal interesting points. Aiming to improve the real-time performance of the proposed method, an on-line solution to block-RPCA decomposition was utilized. Both qualitative and quantitative tests were implemented and the results indicate the superiority of our method to some state-of-the-art approaches in detection accuracy or real-time performance, or both of them.


Sign in / Sign up

Export Citation Format

Share Document