Motion object detection method based on piecemeal principal component analysis of dynamic background updating

Author(s):  
Xiao-Jun Cao ◽  
Bao-Chang Pan ◽  
Sheng-Lin Zheng ◽  
Chao-Yang Zhang
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yaojun Hao ◽  
Fuzhi Zhang ◽  
Jian Wang ◽  
Qingshan Zhao ◽  
Jianfang Cao

Due to the openness of the recommender systems, the attackers are likely to inject a large number of fake profiles to bias the prediction of such systems. The traditional detection methods mainly rely on the artificial features, which are often extracted from one kind of user-generated information. In these methods, fine-grained interactions between users and items cannot be captured comprehensively, leading to the degradation of detection accuracy under various types of attacks. In this paper, we propose an ensemble detection method based on the automatic features extracted from multiple views. Firstly, to collaboratively discover the shilling profiles, the users’ behaviors are analyzed from multiple views including ratings, item popularity, and user-user graph. Secondly, based on the data preprocessed from multiple views, the stacked denoising autoencoders are used to automatically extract user features with different corruption rates. Moreover, the features extracted from multiple views are effectively combined based on principal component analysis. Finally, according to the features extracted with different corruption rates, the weak classifiers are generated and then integrated to detect attacks. The experimental results on the MovieLens, Netflix, and Amazon datasets indicate that the proposed method can effectively detect various attacks.


2006 ◽  
Vol 18 (6) ◽  
pp. 744-750
Author(s):  
Ryouta Nakano ◽  
◽  
Kazuhiro Hotta ◽  
Haruhisa Takahashi

This paper presents an object detection method using independent local feature extractor. Since objects are composed of a combination of characteristic parts, a good object detector could be developed if local parts specialized for a detection target are derived automatically from training samples. To do this, we use Independent Component Analysis (ICA) which decomposes a signal into independent elementary signals. We then used the basis vectors derived by ICA as independent local feature extractors specialized for a detection target. These feature extractors are applied to a candidate area, and their outputs are used in classification. However, the number of dimension of extracted independent local features is very high. To reduce the extracted independent local features efficiently, we use Higher-order Local AutoCorrelation (HLAC) features to extract the information that relates neighboring features. This may be more effective for object detection than simple independent local features. To classify detection targets and non-targets, we use a Support Vector Machine (SVM). The proposed method is applied to a car detection problem. Superior performance is obtained by comparison with Principal Component Analysis (PCA).


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Yuantao Chen ◽  
Jiajun Tao ◽  
Qian Zhang ◽  
Kai Yang ◽  
Xi Chen ◽  
...  

Aiming at the problems of intensive background noise, low accuracy, and high computational complexity of the current significant object detection methods, the visual saliency detection algorithm based on Hierarchical Principal Component Analysis (HPCA) has been proposed in the paper. Firstly, the original RGB image has been converted to a grayscale image, and the original grayscale image has been divided into eight layers by the bit surface stratification technique. Each image layer contains significant object information matching the layer image features. Secondly, taking the color structure of the original image as the reference image, the grayscale image is reassigned by the grayscale color conversion method, so that the layered image not only reflects the original structural features but also effectively preserves the color feature of the original image. Thirdly, the Principal Component Analysis (PCA) has been performed on the layered image to obtain the structural difference characteristics and color difference characteristics of each layer of the image in the principal component direction. Fourthly, two features are integrated to get the saliency map with high robustness and to further refine our results; the known priors have been incorporated on image organization, which can place the subject of the photograph near the center of the image. Finally, the entropy calculation has been used to determine the optimal image from the layered saliency map; the optimal map has the least background information and most prominently saliency objects than others. The object detection results of the proposed model are closer to the ground truth and take advantages of performance parameters including precision rate (PRE), recall rate (REC), and F-measure (FME). The HPCA model’s conclusion can obviously reduce the interference of redundant information and effectively separate the saliency object from the background. At the same time, it had more improved detection accuracy than others.


Author(s):  
Tatsuya TAKINO ◽  
Izuru NOMURA ◽  
Misako MORIBE ◽  
Hiroyuki KAMATA ◽  
Keiki TAKADAMA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document