scholarly journals Exact Single Traveling Wave Solutions for Generalized Fractional Gardner Equations

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhao Li ◽  
Tianyong Han ◽  
Chun Huang

In this paper, the classification of all single traveling wave solutions to generalized fractional Gardner equations is presented by utilizing the complete discrimination system method. Under the fractional traveling wave transformation, generalized fractional Gardner equations can be reduced to an ordinary differential equations. All possible exact traveling wave solutions are given through the complete discrimination system of the fourth-order polynomial. Moreover, graphical representations of different kinds of the exact solutions reveal that the method is of significance for searching the exact solutions to generalized fractional Gardner equations.

2010 ◽  
Vol 24 (03) ◽  
pp. 363-368 ◽  
Author(s):  
YANG SHU

Using the complete discrimination system for polynomial method, we study the (2+1)-dimensional Davey–Stewartson equation and obtain the classifications of all its envelope traveling wave solutions. This is very convenient in practice to give the corresponding solutions for the concrete parameters.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Tianyong Han ◽  
Zhao Li

In this paper, the complete discrimination system method is used to construct the exact traveling wave solutions for fractional coupled Boussinesq equations in the sense of conformable fractional derivatives. As a result, we get the exact traveling wave solutions of fractional coupled Boussinesq equations, which include rational function solutions, Jacobian elliptic function solutions, implicit solutions, hyperbolic function solutions, and trigonometric function solutions. Finally, the obtained solution is compared with the existing literature.


Author(s):  
Supaporn Kaewta ◽  
Sekson Sirisubtawee ◽  
Nattawut Khansai

In this article, we utilize the G′/G2-expansion method and the Jacobi elliptic equation method to analytically solve the (2 + 1)-dimensional integro-differential Jaulent–Miodek equation for exact solutions. The equation is shortly called the Jaulent–Miodek equation, which was first derived by Jaulent and Miodek and associated with energy-dependent Schrödinger potentials (Jaulent and Miodek, 1976; Jaulent, 1976). The equation is converted into a fourth order partial differential equation using a transformation. After applying a traveling wave transformation to the resulting partial differential equation, we obtain an ordinary differential equation which is the main equation to which the both schemes are applied. As a first step, the two methods give us distinguish systems of algebraic equations. The first method provides exact traveling wave solutions including the logarithmic function solutions of trigonometric functions, hyperbolic functions, and polynomial functions. The second approach provides the Jacobi elliptic function solutions depending upon their modulus values. Some of the obtained solutions are graphically characterized by the distinct physical structures such as singular periodic traveling wave solutions and peakons. A comparison between our results and the ones obtained from the previous literature is given. Obtaining the exact solutions of the equation shows the simplicity, efficiency, and reliability of the used methods, which can be applied to other nonlinear partial differential equations taking place in mathematical physics.


2012 ◽  
Vol 17 (2) ◽  
pp. 182-193 ◽  
Author(s):  
Hossein Jafari ◽  
Atefe Sooraki ◽  
Yahya Talebi ◽  
Anjan Biswas

In this paper, the first integral method will be applied to integrate the Davey–Stewartson’s equation. Using this method, a few exact solutions will be obtained using ideas from the theory of commutative algebra. Finally, soliton solution will also be obtained using the traveling wave hypothesis.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050004 ◽  
Author(s):  
Jianli Liang ◽  
Longkun Tang ◽  
Yonghui Xia ◽  
Yi Zhang

In 2014, Khalil et al. [2014] proposed the conformable fractional derivative, which obeys chain rule and the Leibniz rule. In this paper, motivated by the monograph of Jibin Li [Li, 2013], we study the exact traveling wave solutions for a class of third-order MKdV equations with the conformable fractional derivative. Our approach is based on the bifurcation theory of planar dynamical systems, which is much different from the simplest equation method proposed in [Chen & Jiang, 2018]. By employing the traveling wave transformation [Formula: see text] [Formula: see text], we reduce the PDE to an ODE which depends on the fractional order [Formula: see text], then the analysis depends on the order [Formula: see text]. Moreover, as [Formula: see text], the exact solutions are consistent with the integer PDE. However, in all the existing papers, the reduced ODE is independent of the fractional order [Formula: see text]. It is believed that this method can be applicable to solve the other nonlinear differential equations with the conformable fractional derivative.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
M. M. Rashidi ◽  
D. D. Ganji ◽  
S. Dinarvand

The homotopy analysis method (HAM) is applied to obtain the approximate traveling wave solutions of the coupled Whitham-Broer-Kaup (WBK) equations in shallow water. Comparisons are made between the results of the proposed method and exact solutions. The results show that the homotopy analysis method is an attractive method in solving the systems of nonlinear partial differential equations.


2019 ◽  
Vol 33 (27) ◽  
pp. 1950328
Author(s):  
En Gui Fan ◽  
Man Wai Yuen

In this paper, by introducing a stream function and new coordinates, we transform classical Euler–Boussinesq equations into a vorticity form. We further construct traveling wave solutions and similarity reduction for the vorticity form of Euler–Boussinesq equations. In fact, our similarity reduction provides a kind of linearization transformation of Euler–Boussinesq equations.


2019 ◽  
Vol 33 (09) ◽  
pp. 1950106 ◽  
Author(s):  
Behzad Ghanbari

In this paper, some new traveling wave solutions to the Hirota–Maccari equation are constructed with the help of the newly introduced method called generalized exponential rational function method. Several families of exact solutions are found corresponding to the equation. To the best of our knowledge, these solutions are new, and have never been addressed in the literature. The graphical interpretation of the solutions is also depicted. Moreover, it is contemplated that the proposed technique can also be employed to another sort of complex models.


Sign in / Sign up

Export Citation Format

Share Document