scholarly journals Emotion Analysis of College Students Using a Fuzzy Support Vector Machine

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yan Ding ◽  
Xuemei Chen ◽  
Shan Zhong ◽  
Li Liu

With the rapid development of society, the number of college students in our country is on the rise. College students are under pressure due to challenges from the society, school, and family, but they cannot find a suitable solution. As a result, the psychological problems of college students are diversified and complicated. The mental health problem of college students is becoming more and more serious, which requires urgent attention. This article realizes the monitoring of university mental health by identifying and analyzing the emotions of college students. This article uses EEG to determine the emotional state of college students. First, feature extraction is performed on different rhythm data of EEG, and then a fuzzy support vector machine (FSVM) is used for classification. Finally, a decision fusion mechanism based on the D-S evidence combination theory is used to fuse the classification results and output the final emotion recognition results. The contribution of this research is mainly in three aspects. One is the use of multiple features, which improves the efficiency of data use; the other is the use of a fuzzy support vector machine classifier with higher noise resistance, and the recognition rate of the model is better. The third is that the decision fusion mechanism based on the D-S evidence combination theory takes into account the classification results of each feature, and the classification results assist each other and integrate organically. The experiment compares emotion recognition based on single rhythm, multirhythm combination, and multirhythm fusion. The experimental results fully prove that the proposed emotion recognition method can effectively improve the recognition efficiency. It has a good practical value in the emotion recognition of college students.

2017 ◽  
Vol 16 (2) ◽  
pp. 116-121 ◽  
Author(s):  
Shuihua Wang ◽  
Yang Li ◽  
Ying Shao ◽  
Carlo Cattani ◽  
Yudong Zhang ◽  
...  

2021 ◽  
Vol 13 (5) ◽  
pp. 1004
Author(s):  
Song Li ◽  
Tianhe Xu ◽  
Nan Jiang ◽  
Honglei Yang ◽  
Shuaimin Wang ◽  
...  

The meteorological reanalysis data has been widely applied to derive zenith tropospheric delay (ZTD) with a high spatial and temporal resolution. With the rapid development of artificial intelligence, machine learning also begins as a high-efficiency tool to be employed in modeling and predicting ZTD. In this paper, we develop three new regional ZTD models based on the least squares support vector machine (LSSVM), using both the International GNSS Service (IGS)-ZTD products and European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) data over Europe throughout 2018. Among them, the ERA5 data is extended to ERA5S-ZTD and ERA5P-ZTD as the background data by the model method and integral method, respectively. Depending on different background data, three schemes are designed to construct ZTD models based on the LSSVM algorithm, including the without background data, with the ERA5S-ZTD, and with the ERA5P-ZTD. To investigate the advantage and feasibility of the proposed ZTD models, we evaluate the accuracy of two background data and three schemes by segmental comparison with the IGS-ZTD of 85 IGS stations in Europe. The results show that the overall average Root Mean Square Errors (RMSE) value of all sites is 30.1 mm for the ERA5S-ZTD, and 10.7 mm for the ERA5P-ZTD. The overall average RMSE is 25.8 mm, 22.9 mm, and 9 mm for the three schemes, respectively. Moreover, the overall improvement rate is 19.1% and 1.6% for the ZTD model with ERA5S-ZTD and ERA5P-ZTD, respectively. In order to explore the reason of the lower improvement for the ZTD model with ERA5P-ZTD, the loop verification is performed by estimating the ZTD values of each available IGS station. In actuality, the monthly improvement rate of estimated ZTD is positive for most stations, and the biggest improvement rate can even reach about 40%. The negative rate mainly comes from specific stations, these stations are located on the edge of the region, near the coast, as well as the lower similarity between the individual verified station and training stations.


Sign in / Sign up

Export Citation Format

Share Document