Chironomid larvae recognition method based on wavelet packet decomposition and fuzzy support vector machine

2010 ◽  
Vol 30 (1) ◽  
pp. 227-229
Author(s):  
Jing-ying ZHAO ◽  
Hai GUO ◽  
Xing-bin SUN ◽  
Yun-han JIANG
2010 ◽  
Vol 121-122 ◽  
pp. 813-818 ◽  
Author(s):  
Wei Guo Zhao ◽  
Li Ying Wang

On the basis of wavelet packet-characteristic entropy(WP-CE) and multiclass fuzzy support vector machine(MFSVM), the author proposes a new fault diagnosis method of vibrating of hearings,in which three layers wavelet packet decomposition of the acquired vibrating signals of hearings is performed and the wavelet packet-characteristic entropy is extracted,the eigenvector of wavelet packet of the vibrating signals is constructed,and taking this eigenvector as fault sample multiclass fuzzy support vector machine is trained to implement the intelligent fault diagnosis. The simulation result from the proposed method is effective and feasible.


2017 ◽  
Vol 16 (2) ◽  
pp. 116-121 ◽  
Author(s):  
Shuihua Wang ◽  
Yang Li ◽  
Ying Shao ◽  
Carlo Cattani ◽  
Yudong Zhang ◽  
...  

2014 ◽  
Vol 556-562 ◽  
pp. 2829-2833 ◽  
Author(s):  
Bang Hua Yang ◽  
Ting Wu ◽  
Qian Wang ◽  
Zhi Jun Han

A recognition method based on Wavelet Packet Decomposition - Common Spatial Patterns (WPD-CSP) and Kernel Fisher Support Vector Machine (KF-SVM) is developed and used for EEG recognition in motor imagery brain–computer interfaces (BCIs). The WPD-CSP is used for feature extraction and KF-SVM is used for classification. The presented recognition method includes the following steps: (1) some important EEG channels are selected. The 'haar' wavelet basis is used to take wavelet packet decomposition. And some decomposed sub-bands related with motor imagery for each EEG channel are reconstructed to obtain the relevant frequency information. (2) A six-dimensional feature vector is obtained by the CSP feature extraction to the reconstructed signal. And then the within-class scatter is calculated based on the feature vector. (3) The scatter is added into the radical basis function to construct a new kernel function. The obtained new kernel is integrated into the SVM to act as its kernel function. To evaluate effectiveness of the proposed WPD-CSP + KF-SVM method, the data from the 2008 international BCI competition are processed. A preliminary result shows that the proposed classification algorithm can well recognize EEG data and improve the EEG recognition accuracy in motor imagery BCIs.


Sign in / Sign up

Export Citation Format

Share Document