scholarly journals Robust Tracking Control of the Euler–Lagrange System Based on Barrier Lyapunov Function and Self-Structuring Neural Networks

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yi Wang ◽  
He Ma ◽  
Weidong Wu

This article studies the robust tracking control problems of Euler–Lagrange (EL) systems with uncertainties. To enhance the robustness of the control systems, an asymmetric tan-type barrier Lyapunov function (ATBLF) is used to dynamic constraint position tracking errors. To deal with the problems of the system uncertainties, the self-structuring neural network (SSNN) is developed to estimate the unknown dynamics model and avoid the calculation burden. The robust compensator is designed to estimate and compensate neural network (NN) approximation errors and unknown disturbances. In addition, a relative threshold event-triggered strategy is introduced, which greatly saves communication resources. Under the proposed robust control scheme, tracking behavior can be implemented with disturbance and unknown dynamics of the EL systems. All signals in the closed-loop system are proved to be bounded by stability analysis, and the tracking error can converge to the neighborhood near the origin. The numerical simulation results show the effectiveness and the validity of the proposed robust control scheme.

2015 ◽  
Vol 15 (1) ◽  
pp. 34-45
Author(s):  
Sanxiu Wang ◽  
Kexin Xing ◽  
Zhengchu Wang

Abstract In this paper an adaptive fuzzy H∞ robust tracking control scheme is developed for a class of uncertain nonlinear Multi-Input and Multi-Output (MIMO) systems. Firstly, fuzzy logic systems are introduced to approximate the unknown nonlinear function of the system by an adaptive algorithm. Next, a H∞ robust compensator controller is employed to eliminate the effect of the approximation error and external disturbances. Consequently, a fuzzy adaptive robust controller is proposed, such that the tracking error of the resulting closed-loop system converges to zero and the tracking robustness performance can be guaranteed. The simulation results performed on a two-link robotic manipulator demonstrate the validity of the proposed control scheme.


2021 ◽  
Vol 2083 (3) ◽  
pp. 032029
Author(s):  
Jing Yu

Abstract In the study of the zero-error tracking control problem for vehicle lateral control systems under full-state constraints and nonparametric uncertainties, the zero-error tracking control problem is presented in this paper. A neural adaptive tracking control scheme is proposed by combining the error transformation of the vehicle lateral control system with the barrier Lyapunov function, which realizes that the tracking error of the vehicle lateral control converges to a prescribed compact set at a controllable or specified convergence rate in a specified finite time. The scheme has the following significant characteristics: 1) Based on the Nussbaum gain, the preset new energy finite-time control algorithm, the tracking error of the vehicle lateral control system with non-parametric uncertainty and external disturbance decreases to zero with t → ∞. In addition, it also has the control ability to cope with the presence or even unknown moment of inertia of the system. 2) Barrier Lyapunov function (BLF) ensures the bounded input of the neural network during the whole system envelope, and ensures the stable learning and approximation of the neural network. Furthermore, the bounded stability of the closed-loop system is proved by Lyapunov analysis. Finally, the effectiveness and superiority of the proposed control method are verified by simulation.


2008 ◽  
Vol 41 (2) ◽  
pp. 11702-11707 ◽  
Author(s):  
Yaonan Wang ◽  
Yi Zuo ◽  
Lihong Huang ◽  
Chunsheng Li

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zuguo Zhang ◽  
Qingcong Wu ◽  
Xiong Li ◽  
Conghui Liang

Purpose Considering the complexity of dynamic and friction modeling, this paper aims to develop an adaptive trajectory tracking control scheme for robot manipulators in a universal unmodeled method, avoiding complicated modeling processes. Design/methodology/approach An augmented neural network (NN) constituted of radial basis function neural networks (RBFNNs) and additional sigmoid-jump activation function (SJF) neurons is introduced to approximate complicated dynamics of the system: the RBFNNs estimate the continuous dynamic term and SJF neurons handle the discontinuous friction torques. Moreover, the control algorithm is designed based on Barrier Lyapunov Function (BLF) to constrain output error. Findings Lyapunov stability analysis demonstrates the exponential stability of the closed-loop system and guarantees the tracking errors within predefined boundaries. The introduction of SJFs alleviates the limitation of RBFNNs on discontinuous function approximation. Owing to the fast learning speed of RBFNNs and jump response of SJFs, this modified NN approximator can reconstruct the system model accurately at a low compute cost, and thereby better tracking performance can be obtained. Experiments conducted on a manipulator verify the improvement and superiority of the proposed scheme in tracking performance and uncertainty compensation compared to a standard NN control scheme. Originality/value An enhanced NN approximator constituted of RBFNN and additional SJF neurons is presented which can compensate the continuous dynamic and discontinuous friction simultaneously. This control algorithm has potential usages in high-performance robots with unknown dynamic and variable friction. Furthermore, it is the first time to combine the augmented NN approximator with BLF. After more exact model compensation, a smaller tracking error is realized and a more stringent constraint of output error can be implemented. The proposed control scheme is applicable to some constraint occasion like an exoskeleton and surgical robot.


2009 ◽  
Vol 15 (2) ◽  
pp. 211-222 ◽  
Author(s):  
Yaonan Wang ◽  
Wei Sun ◽  
Yangqin Xiang ◽  
Siyi Miao

Robotica ◽  
1991 ◽  
Vol 9 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Zoran R. Novaković ◽  
Leon Z˘lajpah

SUMMARYBased on the Lyapunov theory, a new principle was developed for synthesizing robot tracking control in the presence of model uncertainties. First, a general Lyapunov-like robust tracking concept is presented. It is then used as a basis for the control algorithm derived via a quadratic Lyapunov function constructed using a sliding mode function (based on the output error). Control synthesis is made in task-space, without any need for solving the inverse kinematics problem, i.e. one does not need to inver the Jacobian matrix. It is also shown that the tracking error becomes close to zero in a settling time which is less than a prescribed finite time. Simulation results are incorporated.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Mingyu Fu ◽  
Taiqi Wang ◽  
Chenglong Wang

This paper considers the problem of constrained path following control for an underactuated hovercraft subject to parametric uncertainties and external disturbances. A four-degree-of-freedom hovercraft model with unknown curve-fitted coefficients is first rewritten into a parameterized form. By introducing a barrier Lyapunov function into the line-of-sight guidance, the specific transient tracking performance in terms of position error is guaranteed. A novel constrained yaw rate controller is proposed to ensure time-varying yaw rate constraint satisfaction, in which the yaw rate barrier is required to vary with the speed of the hovercraft. Moreover, a command filter is incorporated into the control design to generate the desired virtual controls and its time derivatives. Theoretical analyses show that, under the proposed controller, the position tracking error constraints and the yaw rate constraint can be strictly guaranteed. Finally, numerical simulations illustrate the effectiveness and advantages of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document