A robust tracking control scheme for robotic manipulators with uncertain dynamics

Author(s):  
Z. Man ◽  
M. Palaniswami
2015 ◽  
Vol 15 (1) ◽  
pp. 34-45
Author(s):  
Sanxiu Wang ◽  
Kexin Xing ◽  
Zhengchu Wang

Abstract In this paper an adaptive fuzzy H∞ robust tracking control scheme is developed for a class of uncertain nonlinear Multi-Input and Multi-Output (MIMO) systems. Firstly, fuzzy logic systems are introduced to approximate the unknown nonlinear function of the system by an adaptive algorithm. Next, a H∞ robust compensator controller is employed to eliminate the effect of the approximation error and external disturbances. Consequently, a fuzzy adaptive robust controller is proposed, such that the tracking error of the resulting closed-loop system converges to zero and the tracking robustness performance can be guaranteed. The simulation results performed on a two-link robotic manipulator demonstrate the validity of the proposed control scheme.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Kun Mu ◽  
Cong Liu ◽  
Jinzhu Peng

Based on fuzzy logic system (FLS) andH∞control methodologies, a robust tracking control scheme is proposed for robotic system with uncertainties and external disturbances. FLS is employed to implement the framework of computed torque control (CTC) method via its approximate capability which is used to attenuate the nonlinearity of robotic manipulator. The robustH∞control can guarantee robustness to parametric and dynamics uncertainties and also attenuate the effect of immeasurable external disturbances entering the system. Moreover, a quadratic stability approach is used to reduce the conservatism of the conventional robust control approach. It can be guaranteed that all signals in the closed-loop are bounded by employing the proposed robust tracking control. The validity of the proposed control scheme is shown by simulation of a two-link robotic manipulator.


Sign in / Sign up

Export Citation Format

Share Document