scholarly journals Adaptive Fuzzy H∞ Robust Tracking Control for Nonlinear MIMO Systems

2015 ◽  
Vol 15 (1) ◽  
pp. 34-45
Author(s):  
Sanxiu Wang ◽  
Kexin Xing ◽  
Zhengchu Wang

Abstract In this paper an adaptive fuzzy H∞ robust tracking control scheme is developed for a class of uncertain nonlinear Multi-Input and Multi-Output (MIMO) systems. Firstly, fuzzy logic systems are introduced to approximate the unknown nonlinear function of the system by an adaptive algorithm. Next, a H∞ robust compensator controller is employed to eliminate the effect of the approximation error and external disturbances. Consequently, a fuzzy adaptive robust controller is proposed, such that the tracking error of the resulting closed-loop system converges to zero and the tracking robustness performance can be guaranteed. The simulation results performed on a two-link robotic manipulator demonstrate the validity of the proposed control scheme.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yi Wang ◽  
He Ma ◽  
Weidong Wu

This article studies the robust tracking control problems of Euler–Lagrange (EL) systems with uncertainties. To enhance the robustness of the control systems, an asymmetric tan-type barrier Lyapunov function (ATBLF) is used to dynamic constraint position tracking errors. To deal with the problems of the system uncertainties, the self-structuring neural network (SSNN) is developed to estimate the unknown dynamics model and avoid the calculation burden. The robust compensator is designed to estimate and compensate neural network (NN) approximation errors and unknown disturbances. In addition, a relative threshold event-triggered strategy is introduced, which greatly saves communication resources. Under the proposed robust control scheme, tracking behavior can be implemented with disturbance and unknown dynamics of the EL systems. All signals in the closed-loop system are proved to be bounded by stability analysis, and the tracking error can converge to the neighborhood near the origin. The numerical simulation results show the effectiveness and the validity of the proposed robust control scheme.


Robotica ◽  
1991 ◽  
Vol 9 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Zoran R. Novaković ◽  
Leon Z˘lajpah

SUMMARYBased on the Lyapunov theory, a new principle was developed for synthesizing robot tracking control in the presence of model uncertainties. First, a general Lyapunov-like robust tracking concept is presented. It is then used as a basis for the control algorithm derived via a quadratic Lyapunov function constructed using a sliding mode function (based on the output error). Control synthesis is made in task-space, without any need for solving the inverse kinematics problem, i.e. one does not need to inver the Jacobian matrix. It is also shown that the tracking error becomes close to zero in a settling time which is less than a prescribed finite time. Simulation results are incorporated.


2013 ◽  
Vol 313-314 ◽  
pp. 370-373
Author(s):  
Jing Mei Zhang ◽  
Lei Xue ◽  
Rui Min Zhang ◽  
Chang Yin Sun

A robust tracking control method for 3 DOF helicopter via least squares support vector machine with considering uncertainty and bounded disturbance is proposed in this paper. The inversion errors which is brought due to modeling errors and uncertainty can be compensated by least squares support vector machine, and the optimal regulator guaranteed dynamic characteristics of approximate linearization system and response quality of tracking error dynamic. Finally, the stability and convergence analysis of error dynamic system is proven by Lyapunov stability theory and numerical simulations have demonstrated the effectiveness of the proposed approach.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Kun Mu ◽  
Cong Liu ◽  
Jinzhu Peng

Based on fuzzy logic system (FLS) andH∞control methodologies, a robust tracking control scheme is proposed for robotic system with uncertainties and external disturbances. FLS is employed to implement the framework of computed torque control (CTC) method via its approximate capability which is used to attenuate the nonlinearity of robotic manipulator. The robustH∞control can guarantee robustness to parametric and dynamics uncertainties and also attenuate the effect of immeasurable external disturbances entering the system. Moreover, a quadratic stability approach is used to reduce the conservatism of the conventional robust control approach. It can be guaranteed that all signals in the closed-loop are bounded by employing the proposed robust tracking control. The validity of the proposed control scheme is shown by simulation of a two-link robotic manipulator.


Sign in / Sign up

Export Citation Format

Share Document