scholarly journals Effect of R Angle of the Outer Extension Tube against the in-Core Flux Thimble in Nuclear Power Plant on Its Wear Behavior

Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Qiang Chen ◽  
Yinhui Che ◽  
Jianjun Guan ◽  
Yang Li ◽  
Qinhu Wang

Wear failure of the in-core flux thimble is an important problem in the neutron flux measurement system, which threatens the safety of the nuclear power plant. To figure out the wear mechanism of the thimble, a wear tester was designed and manufactured to simulate the wear process of the in-core flux thimble. Outer guide tubes with different R angles were used to abrade the thimbles. The designed tester can well simulate the wear process in the real power plant. R angle of the outer guide tube played important role in the wear behavior of the in-core flux thimbles.

2020 ◽  
Vol 39 (5) ◽  
pp. 6339-6350
Author(s):  
Esra Çakır ◽  
Ziya Ulukan

Due to the increase in energy demand, many countries suffer from energy poverty because of insufficient and expensive energy supply. Plans to use alternative power like nuclear power for electricity generation are being revived among developing countries. Decisions for installation of power plants need to be based on careful assessment of future energy supply and demand, economic and financial implications and requirements for technology transfer. Since the problem involves many vague parameters, a fuzzy model should be an appropriate approach for dealing with this problem. This study develops a Fuzzy Multi-Objective Linear Programming (FMOLP) model for solving the nuclear power plant installation problem in fuzzy environment. FMOLP approach is recommended for cases where the objective functions are imprecise and can only be stated within a certain threshold level. The proposed model attempts to minimize total duration time, total cost and maximize the total crash time of the installation project. By using FMOLP, the weighted additive technique can also be applied in order to transform the model into Fuzzy Multiple Weighted-Objective Linear Programming (FMWOLP) to control the objective values such that all decision makers target on each criterion can be met. The optimum solution with the achievement level for both of the models (FMOLP and FMWOLP) are compared with each other. FMWOLP results in better performance as the overall degree of satisfaction depends on the weight given to the objective functions. A numerical example demonstrates the feasibility of applying the proposed models to nuclear power plant installation problem.


Sign in / Sign up

Export Citation Format

Share Document