Scanning
Latest Publications


TOTAL DOCUMENTS

2271
(FIVE YEARS 128)

H-INDEX

53
(FIVE YEARS 4)

Published By Hindawi Limited

1932-8745, 0161-0457

Scanning ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Meng Du ◽  
Haifeng Mei ◽  
Ya Liu

Phase equilibria of the Fe-Al-Ni-O system at 750°C were determined by scanning electron microscopy coupled with energy-dispersive X-ray spectrometer and X-ray power diffraction. 54 alloys were prepared with weighted metal and Ni2O3 powder and were annealed at 750°C for 45 days. Two four-phase equilibrium regions and three three-phase equilibrium regions were confirmed, and the boundary between spinel and corundum was obtained. Comparing with the Fe-Al-Ni-O oxidation diagram at 750°C calculated with FSstel and FToxid databases, the phase boundary of the spinel and corundum oxides from experiments was inclined to the Ni-Al side. The determined relationship between primary oxides and alloy composition in this work can be used as a reference for the preparation of the oxide film by selective oxidation.


Scanning ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
R. Raj Mohan ◽  
R. Venkatraman ◽  
S. Raghuraman ◽  
P. Manoj Kumar ◽  
Moti Lal Rinawa ◽  
...  

Powder-based additive manufacturing (PAM) is a potential fabrication approach in advancing state-of-the-art research to produce intricate components with high precision and accuracy in near-net form. In PAM, the raw materials are used in powder form, deposited on the surface layer by layer, and fused to produce the final product. PAM composite fabrication for biomedical implants, aircraft structure panels, and automotive brake rotary components is gaining popularity. In PAM composite fabrication, the aluminium cast alloy is widely preferred as a metal matrix for its unique properties, and different reinforcements are employed in the form of oxides, carbides, and nitrides. However, for enhancing the mechanical properties, the carbide form is predominantly considered. This comprehensive study focuses on contemporary research and reveals the effect of metal carbide’s (MCs) addition to the aluminium matrix processed through various PAM processes, challenges involved, and potential scopes to advance the research.


Scanning ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Xiaochao Tian ◽  
Zhicong Wang ◽  
Sida Zhang ◽  
Shenfang Li ◽  
Jinlong Liu ◽  
...  

In order to solve the problem of waste heat collection from energy consumption, a thermal energy generation device combining shape memory alloy and piezoelectric materials has been designed. The shape memory alloy is heated and deformed to drive the drive wheel continuously, and the impact wheel is deformed against the piezoelectric cantilever beam during the rotation of the drive wheel to generate electricity. In this paper, the impact force generated by the impact wheel and the output voltage of the piezoelectric cantilever beam during the rotation process are given. Finally, the experimental test shows that the larger the radius of the drive wheel, the lower the impact force of the wheel and the lower the output voltage of the piezoelectric cantilever beam; the larger the diameter of the shape memory alloy wire, the higher the impact force of the wheel and the higher the output voltage of the piezoelectric cantilever beam; the more teeth of the drive wheel, the higher the impact frequency of the piezoelectric cantilever beam and the higher the output voltage. The maximum output voltage of the thermoelectric converter is 14.2 V, when the drive wheel radius is 13 mm, the shape memory alloy wire diameter is 1 mm and the number of impact wheel teeth is 6. The new structural design provides a new structural model for waste heat recovery and thermal energy generation technology. The new structural design provides a new approach and idea for waste heat recovery and thermal energy generation technology.


Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jianguo Lin ◽  
Wenhao Cai ◽  
Qing Peng ◽  
Fanbin Meng ◽  
Dechuang Zhang

In this work, a highly ordered TiO2 nanotube array on pure titanium (Ti) was prepared by anodization. The effects of the applied voltage and anodization time on the microstructure of the TiO2 nanotube arrays were investigated, and their hydrophilicity was evaluated by the water contact angle measurement. It was found that a highly ordered array of TiO2 nanotubes can be formed on the surface of pure Ti by anodized under the applied voltage of 20 V and the anodization time in the range of 6-12 h, and the nanotube diameter and length can be regulated by anodization time. The as-prepared TiO2 nanotubes were in an amorphous structure. After annealing at 550°C for 3 h, the amorphous TiO2 can be transformed to the anatase TiO2 through crystallization. The anatase TiO2 array exhibited a greatly improved hydrophilicity, depending on the order degree of the array and the diameter of the nanotubes. The sample anodized at 20 V for 12 h and then annealed at 550°C for 3 h exhibited a superhydrophilicity due to its highly ordered anatase TiO2 nanotube array with a tube diameter of 103.5 nm.


Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jing Bai ◽  
Yan Xu ◽  
Qizhou Fan ◽  
Ruihua Cao ◽  
Xingxing Zhou ◽  
...  

Zn and Zn-based alloys exhibit biosafety and biodegradation, considered as candidates for biomedical implants. Zn-0.02 wt.% Mg (Zn-0.02 Mg), Zn-0.05 wt.% Mg (Zn-0.05 Mg), and Zn-0.2 wt.% Mg (Zn-0.2 Mg) wires (Φ 0.3 mm) were prepared for precision biomedical devices in this work. With the addition of Mg in Zn-xMg alloys, the grain size decreased along with the occurrence of Mg2Zn11 at the grain boundaries. Hot extrusion, cold drawing, and annealing treatment were introduced to further refining the grain size. Besides, the hot extrusion and cold drawing improved the tensile strength of Zn-xMg alloys to 240-270 MPa while elongation also increased but remained under 10%. Annealing treatment could improve the elongation of Zn alloys to 12% -28%, but decrease the tensile strength. Furthermore, Zn-xMg wires displayed an increase in degradation rate with Mg addition. The findings might provide a potential possibility of Zn-xMg alloy wires for biomedical applications.


Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xiuxiu Hou ◽  
Keyong Yuan ◽  
Zhengwei Huang ◽  
Rui Ma

Objective. To compare the effects of bleaching associated with Er:YAG and Nd:YAG laser on enamel structure and mixed biofilm formation on teeth surfaces. Materials and Methods. Sixty-eight enamel samples were randomly divided into four groups ( n = 17 ), control, Opalescence Boost only, Opalescence Boost plus Er: YAG laser, and Opalescence Boost plus Nd:YAG laser. The structure was observed using SEM after bleaching. Subsequently, the treated enamel samples were also cultured in suspensions of Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, and Fusobacterium nucleatum (Fn) for 24 and 48 h. Biofilm formation was quantified by crystal violet staining, and the structure was visualized by confocal laser scanning microscopy. The data were analyzed using the Kruskal-Wallis method. Results. The enamel structure significantly changed after bleaching. There was no obvious difference in the biofilm formation after 24 h; however, after 48 hours, the amount of biofilm increased significantly. Remarkably, the amount was significantly higher on enamel bleached only, however, there was no significant difference between samples bleached with Er:YAG or Nd:YAG laser compared to the control. Conclusions. Bleaching only appeared to markedly promote biofilm formation after 48 h, and the biofilms on samples bleached with Er:YAG or Nd:YAG laser did not change significantly, showing that bleaching with Er:YAG or Nd:YAG laser can be safely applied in clinical practice.


Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ning Qiu ◽  
Han Zhu ◽  
Yun Long ◽  
Jinqing Zhong ◽  
Rongsheng Zhu ◽  
...  

Cavitation affects the performance of water-jet pumps. Cavitation erosion will appear on the surface of the blade under long-duration cavitation conditions. The cavitation evolution under specific working conditions was simulated and analyzed. The erosive power method based on the theory of macroscopic cavitation was used to predict cavitation erosion. The result shows that the head of the water-jet pump calculated using the DCM-SST turbulence model is 12.48 m. The simulation error of the rated head is 3.8%. The cavitation structure of tip leakage vortex was better captured. With the decrease of the net positive suction head, the position where the severe cavitation appears in the impeller domain gradually moves from the tip to the root. The erosion region obtained by the cavitation simulation based on the erosive power method is similar to the practical erosion profile in engineering. As the net positive suction head decreases, the erodible area becomes larger, and the erosion intensity increases.


Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Fatih Veysel Nurçin ◽  
Elbrus Imanov

Manual counting and evaluation of red blood cells with the presence of malaria parasites is a tiresome, time-consuming process that can be altered by environmental conditions and human error. Many algorithms were presented to segment red blood cells for subsequent parasitemia evaluation by machine learning algorithms. However, the segmentation of overlapping red blood cells always has been a challenge. Marker-controlled watershed segmentation is one of the methods that was implemented to separate overlapping red blood cells. However, a high number of overlapped red blood cells were still an issue. We propose a novel approach to improve the segmentation efficiency of marker-controlled watershed segmentation. Local minimum histogram background segmentation with a selective hole filling algorithm was introduced to improve segmentation efficiency of marker-controlled watershed segmentation on a high number of overlapping red blood cells. The local minimum was selected on the smoothed histogram for background segmentation. The combination of selective filling, convex hull, and Hough circle detection algorithms was utilized for the intact segmentation of red blood cells. The markers were computed from the resulted mask, and finally, marker-controlled watershed segmentation was applied to separate overlapping red blood cells. As a result, the proposed algorithm achieved higher background segmentation accuracy compared to popular background segmentation algorithms, and the inclusion of corner details improved watershed segmentation efficiency.


Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Syed Faraz Jawed ◽  
Chirag Dhirajlal Rabadia ◽  
Fahad Azim ◽  
Saad Jawaid Khan

A new generation of Ti-xNb-3Fe-9Zr ( x = 15 , 20, 25, 30, 35 wt %) alloys have been designed using various theoretical approaches including DV-xα cluster, molybdenum equivalency, and electron to atom ratio. Afterward, designed alloys are fabricated using cold crucible levitation melting technique. The microstructure and mechanical performances of newly designed alloys are characterized in this work using scanning electron microscope and universal testing machine, respectively. Each alloy demonstrates monolithic β phase except Ti-35Nb-3Fe-9Zr alloy which display dual α ″ + β phases. Typically, niobium acts as an isomorphous beta stabilizer. However, in this work, formation of martensitic α ″ phases occurs at 35 wt % of niobium among the series of newly designed alloys. Furthermore, none of the alloys fail till the maximum load capacity of machine, i.e., 100 KN except Ti-35Nb-3Fe-9Zr alloy. Moreover, the Vickers hardness test is carried out on Ti-xNb-3Fe-9Zr alloys which demonstrate slip bands around the indentation for each alloy. Notably, the deformation bands and cracks around the indentations of each alloy have been observed using optical microscopy; Ti-35Nb-3Fe-9Zr demonstrates some cracks along with slip bands around its indentation. The Ti-25Nb-3Fe-9Zr alloy shows the highest yield strength of 1043 ± 20   MPa , large plasticity of 32 ± 0.5 % , and adequate hardness of 152 ± 3.90   Hv among the investigated alloys. The Ti-25Nb-3Fe-9Zr alloy demonstrates good blend of strength and malleability. Therefore, Ti-25Nb-3Fe-9Zr can be used effectively for the biomedical applications.


Scanning ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Dlsoz Omer Babarasul ◽  
Bestoon Mohammed Faraj ◽  
Fadil Abdullah Kareem

It is impossible to remove tooth-colored restorations by mechanical means without unnecessary damage to the adjacent sound tooth structure. This study is aimed at investigating erbium-doped yttrium aluminum garnet (Er: YAG) laser (Hoya ConBio, VersaWave, CA, USA) in removing composite resin restorations and assessing the change in morphology of bonding surfaces using a scanning electron microscope (EDX, CAMSCANNER, 3200LV, UK). The investigators collected thirty extracted sound human premolar teeth for this investigation, and the conventional design class V cavity was prepared on the buccal surface of each specimen. The specimens were allocated randomly into three groups, according to the procedure used for the ablation of the composite restoration: group A (high-speed diamond fissure bur), group B, and group C (Er: YAG laser) using a different pulse repetition rate of 20 Hz (group B) and 25 Hz (group C). The AutoCAD software program (Autodesk, Inc., 2016) was used to calculate the surface area and the resulting dimensional change of the cavities after restoration removal. The cavities were filled with composite resin and randomly assigned into two groups conforming to the methods applied to eliminate the restoration; diamond turbine fissure bur and laser. In each group, two specimens were selected randomly for scanning electron microscope analysis of bonding surfaces. The least meantime for the composite resin removal was observed in the high-speed diamond bur, significantly less than both Er-YAG laser groups ( p < 0.001 ). However, at a higher pulse repetition rate, time-consuming decreased. The results showed that laser is more conservative in removing composite resin restoration as the change was most remarkable in group A (0.800 mm), then group C (0.466 mm), and the slightest change is in group B (0.372 mm) ( p = 0.014 ). The dentin surface of group A showed a smooth surface with no opened dentinal tubule and intact smear layer. In groups B and C, dentin surfaces were irregular, scaly, or flaky, and dentinal tubules were opened without a smear layer. Therefore, Er: YAG laser is effective for composite resin removal considering the parameters chosen in this study with fewer changes in cavity surface area and better microretentive features.


Sign in / Sign up

Export Citation Format

Share Document