scholarly journals Extensions of Ostrowski Type Inequalities via h -Integrals and s-Convexity

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Khuram Ali Khan ◽  
Khalid Mahmood Awan ◽  
Allah Ditta ◽  
Ammara Nosheen ◽  
Rostin Mabela Matendo

In this paper, Hölder, Minkowski, and power mean inequalities are used to establish Ostrowski type inequalities for s -convex functions via h -calculus. The new inequalities are generalized versions of Ostrowski type inequalities available in literature.


Author(s):  
Dafang Zhao ◽  
Muhammad Aamir Ali ◽  
Artion Kashuri ◽  
Hüseyin Budak ◽  
Mehmet Zeki Sarikaya

Abstract In this paper, we present a new definition of interval-valued convex functions depending on the given function which is called “interval-valued approximately h-convex functions”. We establish some inequalities of Hermite–Hadamard type for a newly defined class of functions by using generalized fractional integrals. Our new inequalities are the extensions of previously obtained results like (D.F. Zhao et al. in J. Inequal. Appl. 2018(1):302, 2018 and H. Budak et al. in Proc. Am. Math. Soc., 2019). We also discussed some special cases from our main results.



2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Muhammad Aamir Ali ◽  
Hüseyin Budak ◽  
Ghulam Murtaza ◽  
Yu-Ming Chu

AbstractIn this research, we introduce the notions of $(p,q)$ ( p , q ) -derivative and integral for interval-valued functions and discuss their fundamental properties. After that, we prove some new inequalities of Hermite–Hadamard type for interval-valued convex functions employing the newly defined integral and derivative. Moreover, we find the estimates for the newly proved inequalities of Hermite–Hadamard type. It is also shown that the results proved in this study are the generalization of some already proved research in the field of Hermite–Hadamard inequalities.



2021 ◽  
Vol 7 (3) ◽  
pp. 3939-3958
Author(s):  
Thanin Sitthiwirattham ◽  
◽  
Muhammad Aamir Ali ◽  
Hüseyin Budak ◽  
Sotiris K. Ntouyas ◽  
...  

<abstract><p>In this paper, we prove some new Ostrowski type inequalities for differentiable harmonically convex functions using generalized fractional integrals. Since we are using generalized fractional integrals to establish these inequalities, therefore we obtain some new inequalities of Ostrowski type for Riemann-Liouville fractional integrals and $ k $-Riemann-Liouville fractional integrals in special cases. Finally, we give some applications to special means of real numbers for newly established inequalities.</p></abstract>



Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 950 ◽  
Author(s):  
Praveen Agarwal ◽  
Mahir Kadakal ◽  
İmdat İşcan ◽  
Yu-Ming Chu

In this work, by using an integral identity together with the Hölder–İşcan inequality we establish several new inequalities for n-times differentiable convex and concave mappings. Furthermore, various applications for some special means as arithmetic, geometric, and logarithmic are given.



2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Huriye Kadakal

In this study, firstly we introduce a new concept called “strongly r-convex function.” After that we establish Hermite-Hadamard-like inequalities for this class of functions. Moreover, by using an integral identity together with some well known integral inequalities, we establish several new inequalities for n-times differentiable strongly r-convex functions. In special cases, the results obtained coincide with the well-known results in the literature.



2011 ◽  
Vol 217 (12) ◽  
pp. 5171-5176 ◽  
Author(s):  
Merve Avci ◽  
Havva Kavurmaci ◽  
M. Emin Özdemir


2013 ◽  
Vol 25 (4) ◽  
pp. 1053-1062
Author(s):  
Mohammad W. Alomari


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qi Li ◽  
Muhammad Shoaib Saleem ◽  
Peiyu Yan ◽  
Muhammad Sajid Zahoor ◽  
Muhammad Imran

The theory of convex functions plays an important role in the study of optimization problems. The fractional calculus has been found the best to model physical and engineering processes. The aim of this paper is to study some properties of strongly convex functions via the Caputo–Fabrizio fractional integral operator. In this paper, we present Hermite–Hadamard-type inequalities for strongly convex functions via the Caputo–Fabrizio fractional integral operator. Some new inequalities of strongly convex functions involving the Caputo–Fabrizio fractional integral operator are also presented. Moreover, we present some applications of the proposed inequalities to special means.



Filomat ◽  
2017 ◽  
Vol 31 (14) ◽  
pp. 4415-4420 ◽  
Author(s):  
Erhan Set ◽  
Ahmet Akdemir ◽  
Emin Özdemir

In this paper some new inequalities of Simpson-type are established for the classes of functions whose derivatives of absolute values are convex functions via Riemann-Liouville integrals. Also, by special selections of n, we give some reduced results.



2002 ◽  
Vol 33 (1) ◽  
pp. 45-56 ◽  
Author(s):  
S. S. Dragomir

Some new inequalities for $m-$convex functions are obtained.



Sign in / Sign up

Export Citation Format

Share Document