scholarly journals Trajectory Tracking of Autonomous Ground Vehicles with Actuator Dead Zones

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Pengfei Zhang ◽  
Qiyuan Chen ◽  
Tingting Yang

This paper investigates the trajectory tracking problem of autonomous ground vehicles (AGVs). The dynamics considered feature external disturbances, model uncertainties, and actuator dead zones. First, a novel time-varying yaw guidance law is proposed based on the line of sight method. By a state transformation, the AGV is proved to realize trajectory tracking control under the premise of eliminating guidance deviation. Second, a fixed time dead zone compensation control method is introduced to ensure the yaw angle tracking of the presented guidance. Furthermore, an improved fixed-time disturbance observer is proposed to compensate for the influence of the actuator dead zone on disturbance observation. Finally, the trajectory tracking control strategy is designed, and simulation comparison shows the effectiveness of the compensate method. The CarSim–MATLAB cosimulation shows that the proposed control strategy effectively makes the AGV follow the reference trajectory.

Author(s):  
Zheng Zhang ◽  
Meng Ji ◽  
Nilanjan Sarkar

A departure from the traditional trajectory tracking control technique of a mobile robot is presented here in order to accommodate sudden changes in the reference trajectory. It is expected that in a dynamic, uncretain environment the robot may need to make sudden changes in its navigation strategy that may necessitate such an approach. In this work, a hybrid control framework is developed that first determines a suitable control strategy for a particular subtask and then implements it by means of choosing the specific controller. A supervisor is used to determine the suitable control strategy. The swiching stability among a set of trajectory tracking controllers is analyzed. Extensive simulation results demonstrate the efficacy of the proposed control technique.


Author(s):  
AM Shafei ◽  
H Mirzaeinejad

This article establishes an innovative and general approach for the dynamic modeling and trajectory tracking control of a serial robotic manipulator with n-rigid links connected by revolute joints and mounted on an autonomous wheeled mobile platform. To this end, first the Gibbs–Appell formulation is applied to derive the motion equations of the mentioned robotic system in closed form. In fact, by using this dynamic method, one can eliminate the disadvantage of dealing with the Lagrange Multipliers that arise from nonholonomic system constraints. Then, based on a predictive control approach, a general recursive formulation is used to analytically obtain the kinematic control laws. This multivariable kinematic controller determines the desired values of linear and angular velocities for the mobile base and manipulator arms by minimizing a point-wise quadratic cost function for the predicted tracking errors between the current position and the reference trajectory of the system. Again, by relying on predictive control, the dynamic model of the system in state space form and the desired velocities obtained from the kinematic controller are exploited to find proper input control torques for the robotic mechanism in the presence of model uncertainties. Finally, a computer simulation is performed to demonstrate that the proposed algorithm can dynamically model and simultaneously control the trajectories of the mobile base and the end-effector of such a complicated and high-degree-of-freedom robotic system.


Author(s):  
Bo Su ◽  
Hongbin Wang ◽  
Ning Li

In this paper, an event-triggered integral sliding mode fixed-time control method for trajectory tracking problem of autonomous underwater vehicle (AUV) with disturbance is investigated. Initially, the global fixed time stability is ensured with conventional periodic sampling method for reference trajectory tracking. By introducing fixed time integral sliding mode manifold, fixed time control strategy is expressed for the AUV, which can effectively eliminate the singularity. Correspondingly, in order to reduce the damage caused by chattering phenomenon, an adaptive fixed-time method is proposed based on the designed continuous integral terminal sliding mode (ITSM) to ensure that the trajectory tracking for AUV is achieved in fixed-time with external disturbance. In order to reduce resource consumption in the process of transmission network, the event-triggered sliding mode control strategy is designed which condition is triggered by an event. Also, Zeno behavior is avoided by proof of theoretical. It is shown that the upper bounds of settling time are only dependent on the parameters of controller. Theoretical analysis and simulation experiment results show that the presented methods can realize the control object.


Author(s):  
Yuanyan Chen ◽  
J. Jim Zhu ◽  
Letian Lin

Abstract Conventional automatic trajectory tracking control technics for car-like ground vehicles typically decompose the controller into separate longitudinal driving control and lateral-directional steering control, owing to the nonholonomic kinematic constraint, highly nonlinear dynamics and control under-actuation of such vehicles. However, such decoupled control techniques inevitably impose operational constraints on agile maneuvers that may be critical in evading impending collisions, preventing loss-of-control of the vehicle, and special maneuvers that are needed for law enforcement missions. Thus, integrated three-Degree-of-Freedom (3DOF) tracking control of car-like ground vehicles are highly desirable but remains a challenging problem. There also appears to be a lack of research on automated reverse driving. In our previous work [ASME DSCC2017-5372, DSCC2018-9148], design and hardware validation test results of an integrated 3DOF trajectory tracking controller based on nonlinear kinematics and dynamics vehicle model using Trajectory Linearization Control (TLC) for forward driving have been reported. The present paper supplements that work with design and hardware validation test results on vehicle backward driving at fast and low speeds. The reverse driving control incurs minimal alteration to the original design with minimal tuning efforts due to the model-based TLC control approach, and it should be readily scaled-up to full-size vehicles and adapted to different types of autonomous ground vehicles with the knowledge of vehicles’ kinematics and dynamics parameters.


Author(s):  
Meiying Ou ◽  
Haibin Sun ◽  
Zhenxing Zhang ◽  
Lingchun Li

This paper investigates the fixed-time trajectory tracking control for a group of nonholonomic mobile robots, where the desired trajectory is generated by a virtual leader, the leader’s information is available to only a subset of the followers, and the followers are assumed to have only local interaction. According to fixed-time control theory and adding a power integrator technique, distributed fixed-time tracking controllers are developed for each robot such that all states of each robot can reach the desired value in a fixed time. Moreover, the settling time is independent of the system initial conditions and only determined by the controller parameters. Simulation results illustrate and verify the effectiveness of the proposed schemes.


Sign in / Sign up

Export Citation Format

Share Document