scholarly journals Loss of GATA4 C-Terminus by p.S335X Mutation Modulates Coronary Artery Vascular Smooth Muscle Cell Phenotype

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ting-Yan Yu ◽  
Xin-Xin Chen ◽  
Qing-Wen Liu ◽  
Fang-Fang Ma ◽  
Hong-Lang Huang ◽  
...  

Coronary artery disease (CAD) has been the leading cause of morbidity and mortality worldwide, and its pathogenesis is closely related with the proliferation and migration of vascular smooth muscle cell (VSMC). We previously reported a truncated GATA4 protein lacking C-terminus induced by p.S335X mutation in cardiomyocyte from ventricular septal defect (VSD) patients. However, it is still unclear whether GATA4 p.S335X mutation could influence the development of CAD. GATA4 wild-type (WT) and p.S335X mutant (MU) overexpression plasmids were constructed and transfected transiently into rat coronary artery smooth muscle cell (RCSMC) to observe the proliferative and migratory abilities by MTS and wound healing assay, respectively. PCR array was used to preliminarily detect the expression of phenotypic modulation-related genes, and QRT-PCR was then carried out to verify the screened differentially expressed genes (DEGs). The results showed that, when stimulated by fetal bovine serum (10%) for 24 h or tumor necrosis factor-α (10 or 30 ng/ml) for 10 or 24 h, deletion of GATA4 C-terminus by p.S335X mutation in GATA4 enhanced the proliferation of RCSMC, without alteration of the migration capability. Twelve DEGs, including Fas, Hbegf, Itga5, Aimp1, Cxcl1, Il15, Il2rg, Il7, Tnfsf10, Il1r1, Irak1, and Tlr3, were screened and identified as phenotypic modulation-related genes. Our data might be beneficial for further exploration regarding the mechanisms of GATA4 p.S335X mutation on the phenotypic modulation of coronary VSMC.

2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Ning Shi ◽  
Xiao-Bing Cui ◽  
Shi-You Chen

Olfactomedin 2 (Olfm2) is a novel regulator for vascular smooth muscle cell (SMC) differentiation, but it is unclear whether Olfm2 is also involved in SMC phenotypic modulation, an important process associated with vascular injury. In this study, we found that Olfm2 was induced during PDGF-BB-induced SMC phenotypic modulation. Olfm2 knockdown attenuated PDGF-BB-induced suppression of SM marker genes including SM myosin heavy chain and SM22α, and also inhibited PDGF-BB-stimulated SMC proliferation and migration. On the other hand, Olfm2 overexpression down-regulated SM markers gene expression, and promoted SMC proliferation marker PCNA expression. Moreover, PDGF-BB slightly induced expression of Runx2, which interfered with the formation of SRF/myocardin ternary complex, but dramatically enhanced SRF-Runx2 interaction, suggesting that certain factors mediate SRF-Runx2 interaction. Indeed, Olfm2 physically interacted with both SRF and Runx2. Blockade of Olfm2 inhibited SRF association with Runx2, leading to increased association between SRF and myocardin, which in turn activated the transcription of SM markers, whereas overexpression of Olfm2 promoted SRF binding to Runx2. These results demonstrated that Olfm2 mediates the interaction between SRF and Runx2, contributing to SMC phenotypic modulation.


2011 ◽  
Vol 178 (2) ◽  
pp. 924-934 ◽  
Author(s):  
Jan H. von der Thüsen ◽  
Keren S. Borensztajn ◽  
Silvia Moimas ◽  
Sandra van Heiningen ◽  
Peter Teeling ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document