scholarly journals Image Recognition of Badminton Swing Motion Based on Single Inertial Sensor

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhesen Chu ◽  
Min Li

This article analyzes the method of reading data from inertial sensors. We introduce how to create a 3D scene and a 3D human body model and use inertial sensors to drive the 3D human body model. We capture the movement of the lower limbs of the human body when a small number of inertial sensor nodes are used. This paper introduces the idea of residual error into the deep LSTM network to solve the problem of gradient disappearance and gradient explosion. The main problem to be solved by wearable inertial sensor continuous human motion recognition is the modeling of time series. This paper chooses the LSTM network which can handle time series as well as the main frame. In order to reduce the gradient disappearance and gradient explosion problems in the deep LSTM network, the structure of the deep LSTM network is adjusted based on the residual learning idea. In this paper, a data acquisition method using a single inertial sensor fixed on the bottom of a badminton racket is proposed, and a window segmentation method based on the combination of sliding window and action window in real-time motion data stream is proposed. We performed feature extraction on the intercepted motion data and performed dimensionality reduction. An improved Deep Residual LSTM model is designed to identify six common swing movements. The first-level recognition algorithm uses the C4.5 decision tree algorithm to recognize the athlete’s gripping style, and the second-level recognition algorithm uses the random forest algorithm to recognize the swing movement. Simulation experiments confirmed that the proposed improved Deep Residual LSTM algorithm has an accuracy of over 90.0% for the recognition of six common swing movements.

2020 ◽  
Author(s):  
Bastian Wandt

Abstract This dissertation deals with the problem of capturing human motions and poses using a single camera. The frst part of the thesis proposes two closely related approaches for the 3D reconstruction of human motions from image sequences. To resolve inherent ambiguities in monocular 3D reconstruction the main idea of this part is to exploit temporal properties of human motions in combination with a human body model learned from training data. The second part of the thesis tackles the problem of reconstructing a human pose from a single image. A human body model is learned by training a deep neural network that covers nonlinearities and anthropometric constraints. C O N T E N T S 1 Introduction ….. 1 1.1 Applications and Commercial Systems . . . . . . . . . . . 1 1.2 Image-based Motion Capture . . . . . . . . . . . . . . . . 2 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Time Consistent Human Motion Reconstruction . 6 1.3.2 RepNet . . . . . . . ...


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 924
Author(s):  
Zhenzhen Huang ◽  
Qiang Niu ◽  
Ilsun You ◽  
Giovanni Pau

Wearable devices used for human body monitoring has broad applications in smart home, sports, security and other fields. Wearable devices provide an extremely convenient way to collect a large amount of human motion data. In this paper, the human body acceleration feature extraction method based on wearable devices is studied. Firstly, Butterworth filter is used to filter the data. Then, in order to ensure the extracted feature value more accurately, it is necessary to remove the abnormal data in the source. This paper combines Kalman filter algorithm with a genetic algorithm and use the genetic algorithm to code the parameters of the Kalman filter algorithm. We use Standard Deviation (SD), Interval of Peaks (IoP) and Difference between Adjacent Peaks and Troughs (DAPT) to analyze seven kinds of acceleration. At last, SisFall data set, which is a globally available data set for study and experiments, is used for experiments to verify the effectiveness of our method. Based on simulation results, we can conclude that our method can distinguish different activity clearly.


Author(s):  
Bu S. Park ◽  
Sunder S. Rajan ◽  
Leonardo M. Angelone

We present numerical simulation results showing that high dielectric materials (HDMs) when placed between the human body model and the body coil significantly alter the electromagnetic field inside the body. The numerical simulation results show that the electromagnetic field (E, B, and SAR) within a region of interest (ROI) is concentrated (increased). In addition, the average electromagnetic fields decreased significantly outside the region of interest. The calculation results using a human body model and HDM of Barium Strontium Titanate (BST) show that the mean local SAR was decreased by about 56% (i.e., 18.7 vs. 8.2 W/kg) within the body model.


Sign in / Sign up

Export Citation Format

Share Document