scholarly journals A Random Walk with Restart Model Based on Common Neighbors for Predicting the Clinical Drug Combinations on Coronary Heart Disease

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yushi Che ◽  
Wei Cheng ◽  
Yiqiao Wang ◽  
Dong Chen

As the approaching of the clinical big data era, the prediction of whether drugs can be used in combination in clinical practice is a fundamental problem in the analysis of medical data. Compared with high-throughput screening, it is more cost-effective to treat this problem as a link prediction problem and predict by algorithms. Inspired by the rule of combined clinical medication, a new computational model is proposed. The drug-drug combination was predicted by combining the number of adjacent complete subgraphs shared by the two points with the restart random walk algorithm. The model is based on the semisupervised random walk algorithm, and the same neighborhood is used to improve the random walk with restart (CN-RWR). The algorithm can effectively improve the prediction performance and assign a score to any combination of drugs. To fairly compare the predictive performance of the improved model with that of the random walk with restart model (RWR), a cross-validation of the two models on the same drug data was performed. The AUROC of CN-RWR and RWR under the LOOCV validation framework is 0.9741 and 0.9586, respectively, and the improved model results are more reliable. In addition, the top 3 predictive drug combinations have been approved by the public. The new model is expected that this model can be extended to predict the use of combination drugs for other diseases to find combinations of drugs with potential clinical benefits.

2014 ◽  
Vol 38 (8) ◽  
pp. 753-763 ◽  
Author(s):  
D.P. Onoma ◽  
S. Ruan ◽  
S. Thureau ◽  
L. Nkhali ◽  
R. Modzelewski ◽  
...  

2013 ◽  
Vol 06 (06) ◽  
pp. 1350043 ◽  
Author(s):  
LI GUO ◽  
YUNTING ZHANG ◽  
ZEWEI ZHANG ◽  
DONGYUE LI ◽  
YING LI

In this paper, we proposed a semi-automatic technique with a marker indicating the target to locate and segment nodules. For the lung nodule detection, we develop a Gabor texture feature by FCM (Fuzzy C Means) segmentation. Given a marker indicating a rough location of the nodules, a decision process is followed by applying an ellipse fitting algorithm. From the ellipse mask, the foreground and background seeds for the random walk segmentation can be automatically obtained. Finally, the edge of the nodules is obtained by the random walk algorithm. The feasibility and effectiveness of the proposed method are evaluated with the various types of the nodules to identify the edges, so that it can be used to locate the nodule edge and its growth rate.


2010 ◽  
Vol 1 (3) ◽  
pp. 1-19 ◽  
Author(s):  
Noureddine Bouhmala ◽  
Ole-Christoffer Granmo

The graph coloring problem (GCP) is a widely studied combinatorial optimization problem due to its numerous applications in many areas, including time tabling, frequency assignment, and register allocation. The need for more efficient algorithms has led to the development of several GC solvers. In this paper, the authors introduce a team of Finite Learning Automata, combined with the random walk algorithm, using Boolean satisfiability encoding for the GCP. The authors present an experimental analysis of the new algorithm’s performance compared to the random walk technique, using a benchmark set containing SAT-encoding graph coloring test sets.


Sign in / Sign up

Export Citation Format

Share Document