scholarly journals EARP: Extended Area Multihop Node Localization Algorithm for Anisotropic Wireless Sensor Networks

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yinghui Meng ◽  
Yuewen Chen ◽  
Qiuwen Zhang ◽  
Erlin Tian

Localization is one of the essential problems in the Internet of Things (IoT) and other wireless sensor applications. Most traditional range-free localization algorithms ignore the anisotropy factors, which are frequently observed in wireless sensor networks (WSNs) and result in low positioning precision. To mitigate the impact of anisotropy on localization, this paper proposes an extended area multihop node localization method. The proposed method classifies and discusses the boundaries of the concave area within the communication range of the node and then uses the maximum split communication distance of the node to identify and mark the boundary of the concave area. When the shortest communication path between the nodes is affected by the concave area, the boundary of the concave area is expanded to obtain the new shortest communication path, and the node distance is obtained by comparing the changes in the communication path. After a large number of simulation tests, it is shown that the calculation accuracy of this scheme is better than that of similar modern mainstream localization algorithms.

2011 ◽  
Vol 8 (4) ◽  
pp. 953-972 ◽  
Author(s):  
Qingji Qian ◽  
Xuanjing Shen ◽  
Haipeng Chen

Sensor node localization is the basis for the entire wireless sensor networks. Because of restricted energy of the sensor nodes, the location error, costs of communication and computation should be considered in localization algorithms. DV-Hop localization algorithm is a typical positioning algorithm that has nothing to do with distance. In the isotropic dense network, DV-Hop can achieve position more precisely, but in the random distribution network, the node location error is great. This paper summed up the main causes of error based on the analysis on the process of the DV-Hop algorithm, aimed at the impact to the location error which is brought by the anchor nodes of different position and different quantity, a novel localization algorithm called NDVHop_Bon (New DV-Hop based on optimal nodes) was put forward based on optimal nodes, and it was simulated on Matlab. The results show that the new proposed location algorithm has a higher accuracy on localization with a smaller communication radius in the circumstances, and it has a wider range of applications.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 343 ◽  
Author(s):  
Dezhi Han ◽  
Yunping Yu ◽  
Kuan-Ching Li ◽  
Rodrigo Fernandes de Mello

The Distance Vector-Hop (DV-Hop) algorithm is the most well-known range-free localization algorithm based on the distance vector routing protocol in wireless sensor networks; however, it is widely known that its localization accuracy is limited. In this paper, DEIDV-Hop is proposed, an enhanced wireless sensor node localization algorithm based on the differential evolution (DE) and improved DV-Hop algorithms, which improves the problem of potential error about average distance per hop. Introduced into the random individuals of mutation operation that increase the diversity of the population, random mutation is infused to enhance the search stagnation and premature convergence of the DE algorithm. On the basis of the generated individual, the social learning part of the Particle Swarm (PSO) algorithm is embedded into the crossover operation that accelerates the convergence speed as well as improves the optimization result of the algorithm. The improved DE algorithm is applied to obtain the global optimal solution corresponding to the estimated location of the unknown node. Among the four different network environments, the simulation results show that the proposed algorithm has smaller localization errors and more excellent stability than previous ones. Still, it is promising for application scenarios with higher localization accuracy and stability requirements.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Sana Messous ◽  
Hend Liouane

One of the main issues of wireless sensor networks is localization. Besides, it is important to track and analyze the sensed information. The technique of localization can calculate node position with the help of a set of designed nodes, denoted as anchors. The set density of these anchors may be incremented or decremented because of many reasons such as maintenance, lifetime, and breakdown. The well-known Distance Vector Hop (DV-Hop) algorithm is a suitable solution for localizing nodes having few neighbor anchors. However, existing DV-Hop-based localization methods have not considered the problem of anchor breakdown which may happen during the localization process. In order to avoid this issue, an Online Sequential DV-Hop algorithm is proposed in this paper to sequentially calculate positions of nodes and improve accuracy of node localization for multihop wireless sensor networks. The algorithm deals with the variation of the number of available anchors in the network. We note that DV-Hop algorithm is used in this article to process localization of nodes by a new optimized method for the estimation of the average distance of hops between nodes. Our proposed localization method is based on an online sequential computation. Compared with the original DV-Hop and other localization methods from the literature, simulation results prove that the proposed algorithm greatly minimizes the average of localization error of sensor nodes.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jiang Minlan ◽  
Luo Jingyuan ◽  
Zou Xiaokang

This paper proposes a three-dimensional wireless sensor networks node localization algorithm based on multidimensional scaling anchor nodes, which is used to realize the absolute positioning of unknown nodes by using the distance between the anchor nodes and the nodes. The core of the proposed localization algorithm is a kind of repeated optimization method based on anchor nodes which is derived from STRESS formula. The algorithm employs the Tunneling Method to solve the local minimum problem in repeated optimization, which improves the accuracy of the optimization results. The simulation results validate the effectiveness of the algorithm. Random distribution of three-dimensional wireless sensor network nodes can be accurately positioned. The results satisfy the high precision and stability requirements in three-dimensional space node location.


Sign in / Sign up

Export Citation Format

Share Document