distance vector
Recently Published Documents


TOTAL DOCUMENTS

610
(FIVE YEARS 157)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 17 (12) ◽  
pp. 155014772110586
Author(s):  
Agnieszka Paszkowska ◽  
Konrad Iwanicki

With the increasing adoption of Internet of Things technologies for controlling physical processes, their dependability becomes important. One of the fundamental functionalities on which such technologies rely for transferring information between devices is packet routing. However, while the performance of Internet of Things–oriented routing protocols has been widely studied experimentally, little work has been done on provable guarantees on their correctness in various scenarios. To stimulate this type of work, in this article, we give a tutorial on how such guarantees can be derived formally. Our focus is the dynamic behavior of distance-vector route maintenance in an evolving network. As a running example of a routing protocol, we employ routing protocol for low-power and lossy networks, and as the underlying formalism, a variant of linear temporal logic. By building a dedicated model of the protocol, we illustrate common problems, such as keeping complexity in control, modeling processing and communication, abstracting algorithms comprising the protocol, and dealing with open issues and external dependencies. Using the model to derive various safety and liveness guarantees for the protocol and conditions under which they hold, we demonstrate in turn a few proof techniques and the iterative nature of protocol verification, which facilitates obtaining results that are realistic and relevant in practice.


Author(s):  
M. Chekhar ◽  
K. Zine-Dine ◽  
M. Bakhouya ◽  
A. Aaroud ◽  
J. Gaber

Information broadcasting in wireless network is a necessary building block for cooperative operations. However, the broadcasting causes increases the routing overhead. This paper brings together an array of tools of our adaptive protocol for information broadcasting in MANETs. The proposed protocol in this paper named WAODV (WAIT-AODV). This new adaptive routing discovery protocol for MANETs, lets in nodes to pick out a fantastic motion: both to retransmit receiving request route request (RREQ) messages, to discard, or to wait earlier than making any decision, which dynamically confgures the routing discovery feature to decide a gorgeous motion through the usage of neighbors’ knowledge. Simulations have been conducted to show the effectiveness of the using of techniques adaptive protocol for information broadcasting RREQ packet when integrated into ad hoc on-demand distance vector (AODV) routing protocols for MANET (which is based on simple flooding).


Author(s):  
Dheyaa Jasim Kadhim ◽  
Ali Abdulwahhab Mohammed

The problem motivation of this work deals with how to control the network overhead and reduce the network latency that may cause many unwanted loops resulting from using standard routing. This work proposes three different wireless routing protocols which they are originally using some advantages for famous wireless ad-hoc routing protocols such as dynamic source routing (DSR), optimized link state routing (OLSR), destination sequenced distance vector (DSDV) and zone routing protocol (ZRP). The first proposed routing protocol is presented an enhanced destination sequenced distance vector (E-DSDV) routing protocol, while the second proposed routing protocol is designed based on using the advantages of DSDV and ZRP and we named it as DS-ZRP routing protocol. The third proposed routing protocol is designed based on using the advantaged of multipoint relays in OSLR protocol with the advantages of route cashing in DSR protocol, and we named it as OLS-DSR routing protocol. Then, some experimental tests are doing by demonstration case studies and the experimental results proved that our proposed routing protocols outperformed than current wireless routing protocols in terms of important network performance metrics such as periodical broadcast, network control overhead, bandwidth overhead, energy consumed and latency.


Author(s):  
Meenakshi Prajapati

Abstract: Today the sector is transferring toward wi-fi system. Wireless networks are gaining reputation to its height today, because the customers need wi-fi connectivity regardless of their geographic position. Vehicular advert-hoc networks (VANETs) are taken into consideration to be the unique software of infrastructure-much less wi-fi Mobile advert-hoc community (MANET). In those networks, motors are used as nodes. The thesis works is primarily based totally on assessment among Ad hoc on call for Distance Vector routing protocol (AODV) and Modified ADHOC call for distance vector routing (MAODV) in VANET on the idea of electricity, packet shipping ratio, throughout, overhead and give up to give up delay. Researchers are constantly publishing paperson overall performance paintings on VANET for this reason we labored at the issue. The gear which we used for the paintings of overall performance are NETWORK SIMULATOR (NS2).


2021 ◽  
Author(s):  
Ramahlapane Lerato Moila ◽  
Mthulisi velempini

Abstract Spectrum mobility, cloud computing and the Internet of Things (IoTs) create large data sets, while the demand for more spectrum is increasing. Unfortunately, the spectrum is a scarce resource which is being underutilized by licensed users. The cognitive radio network, also known as intelligent radio, is a network that can adjust to environment changes and, detect available channels. It has emerged as a promising solution for the underutilization of the licensed spectrum and overcrowded free spectrum. Furthermore, given spectrum mobility, frequent link breakages impact negatively on the delivery of packets and the performance of the network. Hence there is need to address the routing problem. We therefore investigated which control methods can be utilized to improve the QoS provisioning in CRAHNs to minimize the signal overhead and to increase the achievable throughput.The study integrated the QoS requirements with optimized cuckoo search (OCS) algorithm to enhance the ad hoc on-demand distance vector (AODV) algorithm to establish a scheme we refer to as OCS-AODV. NS 2 simulation were run on Linux operating system. The comparative results show that the proposed scheme performed well in terms of end-to-end delay and throughput. However, the scheme does not backup alternative paths which can be used in the event of link breakages. The route discovery has to be re-initiated again. Though the route discovery process is faster because of the capability of the CS technique, it still degrades the performance of the scheme.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ali Ahmad ◽  
Sadia Husain ◽  
Muhammad Azeem ◽  
Kashif Elahi ◽  
M. K. Siddiqui

In chemistry, graphs are commonly used to show the structure of chemical compounds, with nodes and edges representing the atom and bond types, respectively. Edge resolving set λ e is an ordered subset of nodes of a graph C , in which each edge of C is distinctively determined by its distance vector to the nodes in λ . The cardinality of a minimum edge resolving set is called the edge metric dimension of C . An edge resolving set L e , f of C is fault-tolerant if λ e , f ∖ b is also an edge resolving set, for every b in λ e , f . Resolving set allows obtaining a unique representation for chemical structures. In particular, they were used in pharmaceutical research for discovering patterns common to a variety of drugs. In this paper, we determine the exact edge metric and fault-tolerant edge metric dimension of benzenoid tripod structure and proved that both parameters are constant.


2021 ◽  
Vol 2068 (1) ◽  
pp. 012047
Author(s):  
Chiang Ling Feng

Abstract To organize the network in an efficient way to minimize the risk of illegal node and to safeguard protected information, a security mechanism is required to secure communication. In addition, a security mechanism is also required to ensure that received information have not been tampered with. In this paper, a more efficient mechanism for Securing the Destination Sequenced Distance Vector Routing Protocol (SDSDV) is proposed. This paper comprehensively investigates the performance impacts by varying the number of maximum connections and mobility on securing the ad hoc network with Destination Sequenced Distance Vector Routing Protocol (DSDV) Routing Protocol. From simulation results, we explore the causes for performance degradation. Based on the investigation, we indicate that we have to impose restrictions on the maximum connections to acquire an expected performance. These results also reveal that the performance decreases with the increment of the mobility and maximum connections that is unequal to 60. If we want to obtain the optimal performance, the number of nodes in a network should be constrained to be 60 if the maximum connections are 60.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yong Zeng ◽  
Yixin Li ◽  
Zhongyuan Jiang ◽  
Jianfeng Ma

It is crucial to generate random graphs with specific structural properties from real graphs, which could anonymize graphs or generate targeted graph data sets. The state-of-the-art method called spectral graph forge (SGF) was proposed at INFOCOM 2018. This method uses a low-rank approximation of the matrix by throwing away some spectrums, which provides privacy protection after distributing graphs while ensuring data availability to a certain extent. As shown in SGF, it needs to discard at least 20% spectrum to defend against deanonymous attacks. However, the data availability will be significantly decreased after more spectrum discarding. Thus, is there a way to generate a graph that guarantees maximum spectrum and anonymity at the same time? To solve this problem, this paper proposes graph nonlinear scaling (GNS). We firmly prove that GNS can preserve all eigenvectors meanwhile providing high anonymity for the forged graph. Precisely, the GNS scales the eigenvalues of the original spectrum and constructs the forged graph with scaled eigenvalues and original eigenvectors. This approach maximizes the preservation of spectrum information to guarantee data availability. Meanwhile, it provides high robustness towards deanonymous attacks. The experimental results show that when SGF discards only 10% of the spectrum, the forged graph has high data availability. At this time, if the distance vector deanonymity algorithm is used to attack the forged graph, almost 100% of the nodes can be identified, while when achieving the same availability, only about 20% of the nodes in the forged graph obtained from GNS can be identified. Moreover, our method is better than SGF in capturing the real graph’s structure in terms of modularity, the number of partitions, and average clustering.


2021 ◽  
Vol 6 (4) ◽  
pp. 59-69
Author(s):  
Mohd Faris Mohd Fuzi ◽  
Khairunnisa Abdullah ◽  
Iman Hazwam Abd Halim ◽  
Rafiza Ruslan

Network automation has evolved into a solution that emphasizes efficiency in all areas. Furthermore, communication and computer networks rely on a platform that provides the necessary technological infrastructure for packet transfer through the Internet using routing protocols. The Enhanced Interior Gateway Routing Protocol (EIGRP) is a hybrid routing protocol that combines the properties of both distance-vector and link-state routing methods. The traditional technique to configure EIGRP is inefficient and requires repeated processes compared to the network automation concept. Network automation helps to assist network administrators in automating and verifying the EIGRP configuration using scripting. This paper implemented network automation using Ansible to configure EIGRP routing and advanced configuration in the GNS3 environment. This study is focused on automated scripting to configure IP Addresses to the interfaces, EIGRP routing protocol, a default static route and advanced EIGRP configurations. Ansible ran the scripting on Network Automation Docker and pushed the configurations to the routers. The network automation docker communicated with other routers via SSH. In the testing phase, the running configuration between the traditional approach and automation scripting in the Ansible playbook was compared to verify EIGRP configurations' accuracy. The findings show that Ansible has successfully deployed the configuration to the routers with no errors. Ansible can help network administrators minimized human mistakes, reduce time-consuming and enable device visibility across the network environment. Implementing EIGRP authentication and hardening process can enhance the network security level for future study.


Sign in / Sign up

Export Citation Format

Share Document