scholarly journals Enhancing the Sensor Node Localization Algorithm Based on Improved DV-Hop and DE Algorithms in Wireless Sensor Networks

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 343 ◽  
Author(s):  
Dezhi Han ◽  
Yunping Yu ◽  
Kuan-Ching Li ◽  
Rodrigo Fernandes de Mello

The Distance Vector-Hop (DV-Hop) algorithm is the most well-known range-free localization algorithm based on the distance vector routing protocol in wireless sensor networks; however, it is widely known that its localization accuracy is limited. In this paper, DEIDV-Hop is proposed, an enhanced wireless sensor node localization algorithm based on the differential evolution (DE) and improved DV-Hop algorithms, which improves the problem of potential error about average distance per hop. Introduced into the random individuals of mutation operation that increase the diversity of the population, random mutation is infused to enhance the search stagnation and premature convergence of the DE algorithm. On the basis of the generated individual, the social learning part of the Particle Swarm (PSO) algorithm is embedded into the crossover operation that accelerates the convergence speed as well as improves the optimization result of the algorithm. The improved DE algorithm is applied to obtain the global optimal solution corresponding to the estimated location of the unknown node. Among the four different network environments, the simulation results show that the proposed algorithm has smaller localization errors and more excellent stability than previous ones. Still, it is promising for application scenarios with higher localization accuracy and stability requirements.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Sana Messous ◽  
Hend Liouane

One of the main issues of wireless sensor networks is localization. Besides, it is important to track and analyze the sensed information. The technique of localization can calculate node position with the help of a set of designed nodes, denoted as anchors. The set density of these anchors may be incremented or decremented because of many reasons such as maintenance, lifetime, and breakdown. The well-known Distance Vector Hop (DV-Hop) algorithm is a suitable solution for localizing nodes having few neighbor anchors. However, existing DV-Hop-based localization methods have not considered the problem of anchor breakdown which may happen during the localization process. In order to avoid this issue, an Online Sequential DV-Hop algorithm is proposed in this paper to sequentially calculate positions of nodes and improve accuracy of node localization for multihop wireless sensor networks. The algorithm deals with the variation of the number of available anchors in the network. We note that DV-Hop algorithm is used in this article to process localization of nodes by a new optimized method for the estimation of the average distance of hops between nodes. Our proposed localization method is based on an online sequential computation. Compared with the original DV-Hop and other localization methods from the literature, simulation results prove that the proposed algorithm greatly minimizes the average of localization error of sensor nodes.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Hua Wu ◽  
Ju Liu ◽  
Zheng Dong ◽  
Yang Liu

In this paper, a hybrid adaptive MCB-PSO node localization algorithm is proposed for three-dimensional mobile wireless sensor networks (MWSNs), which considers the random mobility of both anchor and unknown nodes. An improved particle swarm optimization (PSO) approach is presented with Monte Carlo localization boxed (MCB) to locate mobile nodes. It solves the particle degeneracy problem that appeared in traditional MCB. In the proposed algorithm, a random waypoint model is incorporated to describe random movements of anchor and unknown nodes based on different time units. An adaptive anchor selection operator is designed to improve the performance of standard PSO for each particle based on time units and generations, to maintain the searching ability in the last few time units and particle generations. The objective function of standard PSO is then reformed to make it obtain a better rate of convergence and more accurate cost value for the global optimum position. Furthermore, the moving scope of each particle is constrained in a specified space to improve the searching efficiency as well as to save calculation time. Experiments are made in MATLAB software, and it is compared with DV-Hop, Centroid, MCL, and MCB. Three evaluation indexes are introduced, namely, normalized average localization error, average localization time, and localization rate. The simulation results show that the proposed algorithm works well in every situation with the highest localization accuracy, least time consumptions, and highest localization rates.


The fundamental capacity of a sensor system is to accumulate and forward data to the destination. It is crucial to consider the area of gathered data, which is utilized to sort information that can be procured using confinement strategy as a piece of Wireless Sensor Networks (WSNs).Localization is a champion among the most basic progressions since it agreed as an essential part in various applications, e.g., target tracking. If the client can't gain the definite area information, the related applications can't be skillful. The crucial idea in most localization procedures is that some deployed nodes with known positions (e.g., GPS-equipped nodes) transmit signals with their coordinates so as to support other nodes to localize themselves. This paper mainly focuses on the algorithm that has been proposed to securely and robustly decide thelocation of a sensor node. The algorithm works in two phases namely Secure localization phase and Robust Localization phase. By "secure", we imply that malicious nodes should not effectively affect the accuracy of the localized nodes. By “robust”, we indicate that the algorithm works in a 3D environment even in the presence of malicious beacon nodes. The existing methodologies were proposed based on 2D localization; however in this work in addition to security and robustness, exact localization can be determined for 3D areas by utilizing anefficient localization algorithm. Simulation results exhibit that when compared to other existing algorithms, our proposed work performs better in terms of localization error and accuracy.


Author(s):  
Shrawan Kumar ◽  
D. K. Lobiyal

Obtaining precise location of sensor nodes at low energy consumption, less hardware requirement, and little computation is a challenging task. As one of the well-known range-free localization algorithm, DV-Hop can be simply implemented in wireless sensor networks, but it provides poor localization accuracy. Therefore, in this paper, the authors propose an enhanced DV-Hop localization algorithm that provides good localization accuracy without requiring additional hardware and communication messages in the network. The first two steps of proposed algorithm are similar to the respective steps of the DV-Hop algorithm. In the third step, they first separate error terms (correction factors) of the estimated distance between unknown node and anchor node. The authors then minimize these error terms by using linear programming to obtain better location accuracy. Furthermore, they enhance location accuracy of nodes by introducing weight matrix in the objective function of linear programming problem formulation. Simulation results show that the performance of our proposed algorithm is superior to DV-Hop algorithm and DV-Hop–based algorithms in all considered scenarios.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jiang Minlan ◽  
Luo Jingyuan ◽  
Zou Xiaokang

This paper proposes a three-dimensional wireless sensor networks node localization algorithm based on multidimensional scaling anchor nodes, which is used to realize the absolute positioning of unknown nodes by using the distance between the anchor nodes and the nodes. The core of the proposed localization algorithm is a kind of repeated optimization method based on anchor nodes which is derived from STRESS formula. The algorithm employs the Tunneling Method to solve the local minimum problem in repeated optimization, which improves the accuracy of the optimization results. The simulation results validate the effectiveness of the algorithm. Random distribution of three-dimensional wireless sensor network nodes can be accurately positioned. The results satisfy the high precision and stability requirements in three-dimensional space node location.


2013 ◽  
Vol 303-306 ◽  
pp. 201-205
Author(s):  
Shao Ping Zhang

Localization technology is one of the key supporting technologies in wireless sensor networks. In this paper, a collaborative multilateral localization algorithm is proposed to localization issues for wireless sensor networks. The algorithm applies anchor nodes within two hops to localize unknown nodes, and uses Nelder-Mead simplex optimization method to compute coordinates of the unknown nodes. If an unknown node can not be localized through two-hop anchor nodes, it is localized by anchor nodes and localized nodes within two hops through auxiliary iterative localization method. Simulation results show that the localization accuracy of this algorithm is very good, even in larger range errors.


Sign in / Sign up

Export Citation Format

Share Document