scholarly journals Existence Results for Fractional Semilinear Integrodifferential Equations of Mixed Type with Delay

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xue Wang ◽  
Bo Zhu

In this paper, we discuss a class of fractional semilinear integrodifferential equations of mixed type with delay. Based on the theories of resolvent operators, the measure of noncompactness, and the fixed point theorems, we establish the existence and uniqueness of global mild solutions for the equations. An example is provided to illustrate the application of our main results.


2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
K. Balachandran ◽  
J.-H. Kim

We establish sufficient conditions for the existence and uniqueness of random solutions of nonlinear Volterra-Fredholm stochastic integral equations of mixed type by using admissibility theory and fixed point theorems. The results obtained in this paper generalize the results of several papers.



2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Zhi-Han Zhao ◽  
Yong-Kui Chang ◽  
Juan J. Nieto

The existence of asymptotically almost automorphic mild solutions to an abstract stochastic fractional partial integrodifferential equation is considered. The main tools are some suitable composition results for asymptotically almost automorphic processes, the theory of sectorial linear operators, and classical fixed point theorems. An example is also given to illustrate the main theorems.



2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Jaydev Dabas ◽  
Archana Chauhan ◽  
Mukesh Kumar

This paper is concerned with the existence and uniqueness of a mild solution of a semilinear fractional-order functional evolution differential equation with the infinite delay and impulsive effects. The existence and uniqueness of a mild solution is established using a solution operator and the classical fixed-point theorems.



2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yiliang Liu ◽  
Liang Lu

We study a class of nonlinear fractional integrodifferential equations withp-Laplacian operator in Banach space. Some new existence results are obtained via fixed point theorems for nonlocal boundary value problems of fractionalp-Laplacian equations. An illustrative example is also discussed.



2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sliman Mekki ◽  
Tayeb Blouhi ◽  
Juan J. Nieto ◽  
Abdelghani Ouahab

Abstract In this paper we study a class of impulsive systems of stochastic differential equations with infinite Brownian motions. Sufficient conditions for the existence and uniqueness of solutions are established by mean of some fixed point theorems in vector Banach spaces. An example is provided to illustrate the theory.



2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Saïd Abbas ◽  
Mouffak Benchohra ◽  
Gaston M. N'Guérékata

This paper deals with some existence of mild solutions for two classes of impulsive integrodifferential equations in Banach spaces. Our results are based on the fixed point theory and the concept of measure of noncompactness with the help of the resolvent operator. Two illustrative examples are given in the last section.



2016 ◽  
Vol 16 (06) ◽  
pp. 1650014 ◽  
Author(s):  
Mamadou Abdoul Diop ◽  
Tomás Caraballo ◽  
Mahamat Mahamat Zene

In this work we study the existence, uniqueness and asymptotic behavior of mild solutions for neutral stochastic partial integrodifferential equations with infinite delays. To prove the results, we use the theory of resolvent operators as developed by R. Grimmer [13], as well as a version of the fixed point principle. We establish sufficient conditions ensuring that the mild solutions are exponentially stable in [Formula: see text]th-moment. An example is provided to illustrate the abstract results.



2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Karim Guida ◽  
Khalid Hilal ◽  
Lahcen Ibnelazyz ◽  
Ming Mei

The aim of this paper is to give existence results for a class of coupled systems of fractional integrodifferential equations with Hilfer fractional derivative in Banach spaces. We first give some definitions, namely the Hilfer fractional derivative and the Hausdorff’s measure of noncompactness and the Sadovskii’s fixed point theorem.



Author(s):  
Baolin Li ◽  
Haide Gou

AbstractThis paper discusses the existence of mild solutions for a class of fractional impulsive evolution equation with periodic boundary condition and noncompact semigroup. By using some fixed-point theorems, the existence theorems of mild solutions are obtained, our results are also more general than known results. Furthermore, as an application that illustrates the abstract results, two examples are given.



2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ahmed Alsaedi ◽  
Bashir Ahmad ◽  
Hana Al-Hutami

This paper is concerned with the existence and uniqueness of solutions for a boundary value problem of nonlinear fractionalq-difference equations with nonlocal integral boundary conditions. The existence results are obtained by applying some well-known fixed point theorems and illustrated with examples.



Sign in / Sign up

Export Citation Format

Share Document