scholarly journals A Biologically Inspired Algorithm for Low Energy Clustering Problem in Body Area Network

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mengying Xu ◽  
Jie Zhou

The growing application of body area networks (BANs) in different fields makes the low energy clustering a paramount issue. A clustering optimization algorithm in BANs is a fundamental scheme to guarantee that the essential collected data can be forwarded in a reliable path and improve the lifetime of BANs. Low energy clustering is a technique, which provides a method that shows how to reduce network communication costs in BANs. A careful low energy clustering scheme is one of the most critical means in the research of BANs, which has attracted considerable attention, comprising monitoring capability constraints. However, the classical clustering method leads to high cost when constraints such as large overall energy consumption are undertaken. Hence, a binary immune hybrid artificial bee colony algorithm (BIHABCA), a randomized swarm intelligent scheme applied in BANs, motivated by immune theory and hybrid scheme is introduced. Furthermore, we designed the formulation that considers both distances between two nodes and the length of bits. Finally, we have compared the energy cost optimized by BIHABCA with a shuffled frog leaping algorithm, ant colony optimization, and simulated annealing in the simulation with different quantity of nodes in terms of energy cost. Results show that the energy cost of the network optimized by the proposed BIHABCA method decreased compared to those by the other three methods which mean that the proposed BIHABCA finds the global optima and reduces the energy cost of transmitting and receiving data in BANs.

2012 ◽  
Vol 47 (11) ◽  
pp. 2678-2692 ◽  
Author(s):  
Joonsung Bae ◽  
Kiseok Song ◽  
Hyungwoo Lee ◽  
Hyunwoo Cho ◽  
Hoi-Jun Yoo

Author(s):  
Shilpa Shinde ◽  
Santosh Sonavane

Background and objective: In the Wireless Body Area Network (WBAN) sensors are placed on the human body; which has various mobility patterns like seating, walking, standing and running. This mobility typically assisted with hand and leg movements on which most of the sensors are mounted. Previous studies were largely focused on simulations of WBAN mobility without focusing much on hand and leg movements. Thus for realistic studies on performance of the WBAN, it is important to consider hand and leg movements. Thus, an objective of this paper is to investigate an effect of the mobility patterns with hand movements on the throughput of the WBAN. Method: The IEEE 802.15.6 requirements are considered for WBAN design. The WBAN with star topology is used to connect three sensors and a hub. Three types of mobility viz. standing, walking and running with backward and forward hand movements is designed for simulation purpose. The throughput analysis is carried out with the three sets of simulations with standing, walking and running conditions with the speed of 0 m/s, 0.5 m/s and 3 m/s respectively. The data rate was increased from 250 Kb to 10000 Kb with AODV protocol. It is intended to investigate the effect of the hand movements and the mobility conditions on the throughput. Simulation results are analyzed with the aid of descriptive statistics. A comparative analysis between the simulated model and a mathematical model is also introduced to get more insight into the data. Results: Simulation studies showed that as the data rate is increased, throughput is also increased for all mobility conditions however, this increasing trend was discontinuous. In the standing (static) position, the throughput is found to be higher than mobility (dynamic) condition. It is found that, the throughput is better in the running condition than the walking condition. Average values of the throughput in case of the standing condition were more than that of the dynamic conditions. To validate these results, a mathematical model is created. In the mathematical model, a same trend is observed. Conclusion: Overall, it is concluded that the throughput is decreased due to mobility of the WBAN. It is understood that mathematical models have given more insight into the simulation data and confirmed the negative effect of the mobility conditions on throughput. In the future, it is proposed to investigate effect of interference on the designed network and compare the results.


Sign in / Sign up

Export Citation Format

Share Document