scholarly journals Some Parameterized Quantum Simpson’s and Quantum Newton’s Integral Inequalities via Quantum Differentiable Convex Mappings

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Xue Xiao You ◽  
Muhammad Aamir Ali ◽  
Hüseyin Budak ◽  
Miguel Vivas-Cortez ◽  
Shahid Qaisar

In this work, two generalized quantum integral identities are proved by using some parameters. By utilizing these equalities, we present several parameterized quantum inequalities for convex mappings. These quantum inequalities generalize many of the important inequalities that exist in the literature, such as quantum trapezoid inequalities, quantum Simpson’s inequalities, and quantum Newton’s inequalities. We also give some new midpoint-type inequalities as special cases. The results in this work naturally generalize the results for the Riemann integral.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yi-Xia Li ◽  
Muhammad Aamir Ali ◽  
Hüseyin Budak ◽  
Mujahid Abbas ◽  
Yu-Ming Chu

AbstractIn this paper, we offer a new quantum integral identity, the result is then used to obtain some new estimates of Hermite–Hadamard inequalities for quantum integrals. The results presented in this paper are generalizations of the comparable results in the literature on Hermite–Hadamard inequalities. Several inequalities, such as the midpoint-like integral inequality, the Simpson-like integral inequality, the averaged midpoint–trapezoid-like integral inequality, and the trapezoid-like integral inequality, are obtained as special cases of our main results.



Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1753
Author(s):  
Saima Rashid ◽  
Aasma Khalid ◽  
Omar Bazighifan ◽  
Georgia Irina Oros

Integral inequalities for ℘-convex functions are established by using a generalised fractional integral operator based on Raina’s function. Hermite–Hadamard type inequality is presented for ℘-convex functions via generalised fractional integral operator. A novel parameterized auxiliary identity involving generalised fractional integral is proposed for differentiable mappings. By using auxiliary identity, we derive several Ostrowski type inequalities for functions whose absolute values are ℘-convex mappings. It is presented that the obtained outcomes exhibit classical convex and harmonically convex functions which have been verified using Riemann–Liouville fractional integral. Several generalisations and special cases are carried out to verify the robustness and efficiency of the suggested scheme in matrices and Fox–Wright generalised hypergeometric functions.



Filomat ◽  
2016 ◽  
Vol 30 (9) ◽  
pp. 2435-2444
Author(s):  
Muhammad Noor ◽  
Muhammad Awan ◽  
Khalida Noor ◽  
Mihai Postolache

In this paper, we consider the class of p-convex functions. We derive some new integral inequalities of Hermite-Hadamard and Simpson type for differentiable p-convex functions using two new integral identities. Some special cases are also discussed. Interested readers may find novel and innovative applications of p-convex functions in various branches of pure and applied sciences. The ideas and techniques of this paper may stimulate further research in this field.



Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 51 ◽  
Author(s):  
Humaira Kalsoom ◽  
Saima Rashid ◽  
Muhammad Idrees ◽  
Yu-Ming Chu ◽  
Dumitru Baleanu

In this paper, we present a new definition of higher-order generalized strongly preinvex functions. Moreover, it is observed that the new class of higher-order generalized strongly preinvex functions characterize various new classes as special cases. We acquire a new q 1 q 2 -integral identity, then employing this identity, we establish several two-variable q 1 q 2 -integral inequalities of Simpson-type within a class of higher-order generalized strongly preinvex and quasi-preinvex functions. Finally, the utilities of our numerical approximations have concrete applications.



2021 ◽  
Vol 5 (4) ◽  
pp. 269
Author(s):  
Miguel Vivas-Cortez ◽  
Muhammad Shoaib Saleem ◽  
Sana Sajid ◽  
Muhammad Sajid Zahoor ◽  
Artion Kashuri

Integral inequalities involving many fractional integral operators are used to solve various fractional differential equations. In the present paper, we will generalize the Hermite–Jensen–Mercer-type inequalities for an h-convex function via a Caputo–Fabrizio fractional integral. We develop some novel Caputo–Fabrizio fractional integral inequalities. We also present Caputo–Fabrizio fractional integral identities for differentiable mapping, and these will be used to give estimates for some fractional Hermite–Jensen–Mercer-type inequalities. Some familiar results are recaptured as special cases of our results.



2018 ◽  
Vol 49 (4) ◽  
pp. 317-337 ◽  
Author(s):  
Artion Kashuri ◽  
Rozana Liko ◽  
Silvestru Sever Dragomir

In this article, we first introduced a new class of generalized $((h_{1},h_{2});(\eta_{1},\eta_{2}))$-convex mappings and two interesting lemmas regarding Gauss-Jacobi and\\ Hermite-Hadamard type integral inequalities. By using the notion of generalized\\ $((h_{1},h_{2});(\eta_{1},\eta_{2}))$-convexity and the first lemma as an auxiliary result, some new estimates with respect to Gauss-Jacobi type integral inequalities are established. Also, using the second lemma, some new estimates with respect to Hermite-Hadamard type integral inequalities via Caputo $k$-fractional derivatives are obtained. It is pointed out that some new special cases can be deduced from main results of the article.



2021 ◽  
Vol 7 (2) ◽  
pp. 3203-3220
Author(s):  
Miguel Vivas-Cortez ◽  
◽  
Muhammad Uzair Awan ◽  
Muhammad Zakria Javed ◽  
Artion Kashuri ◽  
...  

<abstract><p>In this paper, we have established some new Hermite–Hadamard–Mercer type of inequalities by using $ {\kappa} $–Riemann–Liouville fractional integrals. Moreover, we have derived two new integral identities as auxiliary results. From the applied identities as auxiliary results, we have obtained some new variants of Hermite–Hadamard–Mercer type via $ {\kappa} $–Riemann–Liouville fractional integrals. Several special cases are deduced in detail and some know results are recaptured as well. In order to illustrate the efficiency of our main results, some applications regarding special means of positive real numbers and error estimations for the trapezoidal quadrature formula are provided as well.</p></abstract>



Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 751 ◽  
Author(s):  
Yongping Deng ◽  
Muhammad Uzair Awan ◽  
Shanhe Wu

In this paper, we establish a new q-integral identity, the result is then used to derive two q-integral inequalities of Simpson-type involving strongly preinvex functions. Some special cases of the obtained results are also considered, it is shown that several new and previously known results can be derived via generalized strongly preinvex functions and quantum integrals.



2019 ◽  
Vol 9 (2) ◽  
pp. 231-243
Author(s):  
George Anastassiou ◽  
Artion Kashuri ◽  
Rozana Liko

AbstractThe authors discover a new identity concerning differentiable mappings defined on $$\mathbf{m }$$ m -invex set via general fractional integrals. Using the obtained identity as an auxiliary result, some fractional integral inequalities for generalized-$$\mathbf{m }$$ m -$$((h_{1}^{p},h_{2}^{q});(\eta _{1},\eta _{2}))$$ ( ( h 1 p , h 2 q ) ; ( η 1 , η 2 ) ) -convex mappings by involving an extended generalized Mittag–Leffler function are presented. It is pointed out that some new special cases can be deduced from main results. Also these inequalities have some connections with known integral inequalities. At the end, some applications to special means for different positive real numbers are provided as well.



2021 ◽  
Vol 5 (3) ◽  
pp. 80
Author(s):  
Hari Mohan Srivastava ◽  
Artion Kashuri ◽  
Pshtiwan Othman Mohammed ◽  
Dumitru Baleanu ◽  
Y. S. Hamed

In this paper, the authors define a new generic class of functions involving a certain modified Fox–Wright function. A useful identity using fractional integrals and this modified Fox–Wright function with two parameters is also found. Applying this as an auxiliary result, we establish some Hermite–Hadamard-type integral inequalities by using the above-mentioned class of functions. Some special cases are derived with relevant details. Moreover, in order to show the efficiency of our main results, an application for error estimation is obtained as well.



Sign in / Sign up

Export Citation Format

Share Document