scholarly journals Study on Instability Mechanism of Extraction Structure under Undercut Space Based on Thin Plate Theory in Block Caving Method

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhi-Yuan Xia ◽  
Zhuo-Ying Tan

The instability of extraction structure under the undercut space in the block caving stope presents specific characteristics: rib spalling and floor heave in ore-loading roadway and collapse of major apexes. In order to study the stress and displacement evolution law of extraction structure under undercut space and reveal the instability mechanism of extraction structure, the numerical simulation model of block caving stope was established using the finite difference software FLAC3D. According to the postundercutting strategy in Tongkuangyu Mine in China, extraction structure was formed first in the simulation process, and then the undercut level was divided into eight units for excavation step by step. The stress and displacement of extraction structure after each step of undercutting were monitored and analyzed. Based on the thin plate theory, the mechanism of stress change and deflection deformation of extraction structure was revealed. The research results show that, under the action of high horizontal tectonic stress and vertical stress, the extraction structure under undercut space produces vertical upward bending deformation after undercutting during the block caving. The tension stress concentration gradually appears in the side wall of the ore-loading roadway and the tip of the major apexes; with the increase of the undercutting area, the degree of tensile stress concentration gradually becomes strong; when the tensile strength of the rock mass in extraction structure is exceeded, extraction structure presents instability. It is necessary to make the overlying ore collapse on extraction structure as soon as possible after undercutting, which is beneficial to release the tension stress in the extraction structure under undercutting space.

Author(s):  
Giovanni Tocci Monaco ◽  
Nicholas Fantuzzi ◽  
Francesco Fabbrocino ◽  
Raimondo Luciano

AbstractIn this work, the bending behavior of nanoplates subjected to both sinusoidal and uniform loads in hygrothermal environment is investigated. The present plate theory is based on the classical laminated thin plate theory with strain gradient effect to take into account the nonlocality present in the nanostructures. The equilibrium equations have been carried out by using the principle of virtual works and a system of partial differential equations of the sixth order has been carried out, in contrast to the classical thin plate theory system of the fourth order. The solution has been obtained using a trigonometric expansion (e.g., Navier method) which is applicable to simply supported boundary conditions and limited lamination schemes. The solution is exact for sinusoidal loads; nevertheless, convergence has to be proved for other load types such as the uniform one. Both the effect of the hygrothermal loads and lamination schemes (cross-ply and angle-ply nanoplates) on the bending behavior of thin nanoplates are studied. Results are reported in dimensionless form and validity of the present methodology has been proven, when possible, by comparing the results to the ones from the literature (available only for cross-ply laminates). Novel applications are shown both for cross- and angle-ply laminated which can be considered for further developments in the same topic.


1955 ◽  
Vol 6 (3) ◽  
pp. 196-204 ◽  
Author(s):  
D. E. R. Godfrey

SummaryThe equations of thin plate theory are expressed in polar co-ordinates and transformed using the Mellin transform. Problems involving discontinuous and isolated normal loadings may then be solved in the case of the built-in or freely supported wedge-shaped boundary.


2011 ◽  
Vol 08 (04) ◽  
pp. 813-824 ◽  
Author(s):  
X. Y. CUI ◽  
S. LIN ◽  
G. Y. LI

This paper presents a thin plate formulation with nodal integration for bending analysis using three-node triangular cells and linear interpolation functions. The formulation was based on the classic thin plate theory, in which only deflection field was required and dealt with as the field variables. They were assumed to be piecewisely linear and expressed using a set of three-node triangular cells. Based on each node, the integration domain has been further derived, where the curvature in the domain was computed using a gradient smoothing technique (GST). As a result, the curvature in each integration domain is a constant whereby the deflection is compatible in the whole problem domain. The generalized smoothed Galerkin weak form is then used to create the discretized system equations where the system stiffness is obtained using simple summation operation. The essential rotational boundary conditions are imposed in the process of constructing the curvature field in conjunction with imposing the translational boundary conditions in the same way as undertaken in the standard FEM. A number of numerical examples were studied using the present formulation, including both static and free vibration analyses. The numerical results were compared with the reference ones together with those shown in the state-of-art literatures published. Very good accuracy has been achieved using the present method.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Xin Zhao ◽  
Dianshu Liu ◽  
Shenglin Li ◽  
Meng Wang ◽  
Shuaikang Tian ◽  
...  

In this study, a C-ALS underground cavity scanner was used to detect the shapes of mining goafs. In addition, GTS software was adopted to establish a three-dimensional geological model based on the status of the stopes, geological data, and mechanical parameters of each rock mass and to analyze the roof areas of the goafs. In regard to the morphology of the study area, based on a thin plate theory and the obtained field sampling data, a formula was established for the thicknesses of the reserved protective layers in the goafs. In addition, a formula for the thicknesses of the protective layers in the curved gobs was obtained. The thickness formula of the protective layers was then successfully verified. The detection results showed that the roof shapes of the goafs in the Yuanjiacun Iron Mine were mainly arc-shaped, and the spans of the goafs were generally less than 20 m. The stability of the arc-shaped roofs was found to be greater than that of the plate-shaped roofs. Therefore, by reducing the thicknesses of the protective layers in mining goafs, the ore recovery rates can be increased on the basis of safe production conditions. The formula of the thickness of the security layers obtained through the thin plate theory was revised based on the statistical results of the roof shapes of the goafs and then combined using GTS and FLAC3D. The modeling method successfully verified the stability of the mined-out areas. It was found that the verification results were good, and the revised formula was able to improve the recovery rate of the ore under the conditions of meeting safe production standards. Also, it was found that the revised formula could be used in the present situation. At the same time, it was also determined that the complexity of the rock masses obstructed the full identification of the joints and fissures in the present orebodies. Therefore, it is necessary to incorporate C-ALS underground cavity scanners to regularly observe the shapes of the goafs in order to ensure that stability and safety standards are maintained.


Sign in / Sign up

Export Citation Format

Share Document