scholarly journals Performance Analysis in the Decode-and-Forward Full-Duplex Relaying Network with SWIPT

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Phu Tran Tin ◽  
Phan Van-Duc ◽  
Tan N. Nguyen ◽  
Le Anh Vu

This paper investigates the decode-and-forward (DF) full-duplex (FD) cooperative relaying system with SWIPT. Specifically, the relay node can harvest energy from the source’s RF signal, and then the harvested energy is used for transferring information to the destination. Besides, we consider both direct and two-hop relaying links to transmit data from the source to the destination. In the performance analysis, we derive the exact expressions for outage probability (OP) by applying the receiver’s selection combining (SC) technique. Then, the Monte Carlo simulation is performed to verify the correctness of the mathematical analysis. Finally, the simulations show that the mathematic expressions match simulation results, which authenticates the mathematical analysis.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Phu Tran Tin ◽  
Van-Duc Phan ◽  
Dong Si Thien Chau ◽  
Tan N. Nguyen ◽  
Phu X. Nguyen

This paper investigates the decode-and-forward (DF) full-duplex (FD) relaying system under the presence of an eavesdropper. Moreover, the relay node is able to harvest energy from a transmitter, and then it uses the harvested energy for conveying information to the receiver. Besides, both two-hop and direct relaying links are taking into consideration. In the mathematical analysis, we derived the exact expressions for intercept probability and outage probability (OP) by applying maximal ratio combining (MRC) and selection combining (SC) techniques at the receiver. Next, the Monte Carlo simulation is performed to validate the mathematical analysis. The results show that the simulation curves match the mathematic expressions, which confirms the analysis section.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Phu Tran Tin ◽  
Phan Van-Duc ◽  
Tan N. Nguyen ◽  
Le Anh Vu

In this paper, we investigate the full-duplex (FD) decode-and-forward (DF) cooperative relaying system, whereas the relay node can harvest energy from radiofrequency (RF) signals of the source and then utilize the harvested energy to transfer the information to the destination. Specifically, a hybrid time-power switching-based relaying method is adopted, which leverages the benefits of time-switching relaying (TSR) and power-splitting relaying (PSR) protocols. While energy harvesting (EH) helps to reduce the limited energy at the relay, full-duplex is one of the most important techniques to enhance the spectrum efficiency by its capacity of transmitting and receiving signals simultaneously. Based on the proposed system model, the performance of the proposed relaying system in terms of the ergodic capacity (EC) is analyzed. Specifically, we derive the exact closed form for upper bound EC by applying some special function mathematics. Then, the Monte Carlo simulations are performed to validate the mathematical analysis and numerical results.


2021 ◽  
Author(s):  
Binod Prasad ◽  
Gopal Chandra Das ◽  
Srinivas Nallagonda ◽  
Seemanti Saha ◽  
Abhijit Bhowmick

Abstract The performance of a relay based Half-Duplex (HD) and Full-Duplex (FD) cooperative cognitive radio (CR) network with a RF energy harvesting (EH) is studied in this paper. Co-operative environment includes a network with multiple primary users (PUs), and CRs. The relay node is considered as an EH node which harvests energy (HE) from RF signal (RFS) of source and loop-back interference. The network performance is studied for instantaneous transmission and delay constraint transmission for decode and forward (DF) relaying protocol. The performance is investigated under a relay energy outage constraint and the expression of throughput is redesigned. Expressions of energy outage, data outage and throughput for HD and FD are developed. The impact of several parameters such as transmitting SNR, fractional harvesting time parameter, fractional transmission time parameter, and loop-back interference on the system throughput has been investigated.


Sign in / Sign up

Export Citation Format

Share Document