scholarly journals Offline Signature Authentication Algorithm Based on the Fuzzy Set

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Shi Qiu ◽  
Fengchang Fei ◽  
Ying Cui

There exists a problem that it is difficult to identify the authenticity of offline signatures. Firstly, a segmentation model is established based on the theory of fuzzy sets to extract signatures completely. Secondly, statistical shape model (SSM) and variance distance discretization of intraclass signatures are introduced for stability analysis and quantification. Finally, multilayer classifiers are constructed to realize signature authentication. The algorithm has low false detection rate and short authentication time.


2019 ◽  
Vol 22 (13) ◽  
pp. 2907-2921 ◽  
Author(s):  
Xinwen Gao ◽  
Ming Jian ◽  
Min Hu ◽  
Mohan Tanniru ◽  
Shuaiqing Li

With the large-scale construction of urban subways, the detection of tunnel defects becomes particularly important. Due to the complexity of tunnel environment, it is difficult for traditional tunnel defect detection algorithms to detect such defects quickly and accurately. This article presents a deep learning FCN-RCNN model that can detect multiple tunnel defects quickly and accurately. The algorithm uses a Faster RCNN algorithm, Adaptive Border ROI boundary layer and a three-layer structure of the FCN algorithm. The Adaptive Border ROI boundary layer is used to reduce data set redundancy and difficulties in identifying interference during data set creation. The algorithm is compared with single FCN algorithm with no Adaptive Border ROI for different defect types. The results show that our defect detection algorithm not only addresses interference due to segment patching, pipeline smears and obstruction but also the false detection rate decreases from 0.371, 0.285, 0.307 to 0.0502, respectively. Finally, corrected by cylindrical projection model, the false detection rate is further reduced from 0.0502 to 0.0190 and the identification accuracy of water leakage defects is improved.



Author(s):  
F.M. Vos ◽  
P.W. de Bruin ◽  
J.G.M. Aubel ◽  
G.J. Streekstra ◽  
M. Maas ◽  
...  


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xun Li ◽  
Yao Liu ◽  
Zhengfan Zhao ◽  
Yue Zhang ◽  
Li He

Vehicle detection is expected to be robust and efficient in various scenes. We propose a multivehicle detection method, which consists of YOLO under the Darknet framework. We also improve the YOLO-voc structure according to the change of the target scene and traffic flow. The classification training model is obtained based on ImageNet and the parameters are fine-tuned according to the training results and the vehicle characteristics. Finally, we obtain an effective YOLO-vocRV network for road vehicles detection. In order to verify the performance of our method, the experiment is carried out on different vehicle flow states and compared with the classical YOLO-voc, YOLO 9000, and YOLO v3. The experimental results show that our method achieves the detection rate of 98.6% in free flow state, 97.8% in synchronous flow state, and 96.3% in blocking flow state, respectively. In addition, our proposed method has less false detection rate than previous works and shows good robustness.





Sign in / Sign up

Export Citation Format

Share Document