scholarly journals Efficient Computation Offloading for Service Workflow of Mobile Applications in Mobile Edge Computing

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Youwei Yuan ◽  
Lu Qian ◽  
Gangyong Jia ◽  
Longxuan Yu ◽  
Zixuan Yu ◽  
...  

Edge computing has become a promising solution to overcome the user equipment (UE) constraints such as low computing capacity and limited energy. A key edge computing challenge is providing computing services with low service congestion and low latency, but the computing resources of edge servers were limited. User task randomness and network inhomogeneity brought considerable challenges to limited-resource MEC systems. To solve these problems, the presented paper proposed a blocking- and delay-aware schedule strategy for MEC environment service workflow offloading. First, the workflow was modeled in mobile applications and the buffer queue in servers. Then, the server collaboration area was divided through a collaboration area division method based on clustering. Finally, an improved particle swarm optimization scheduling method was utilized to solve this NP-hard problem. Many simulation results verified the effectiveness of the proposed scheme. This method was superior to existing methods, which effectively reduces the blocking probability and execution delay and ensures the quality of the experience of the user.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Wenchen Zhou ◽  
Weiwei Fang ◽  
Yangyang Li ◽  
Bo Yuan ◽  
Yiming Li ◽  
...  

Mobile edge computing (MEC) provides cloud-computing services for mobile devices to offload intensive computation tasks to the physically proximal MEC servers. In this paper, we consider a multiserver system where a single mobile device asks for computation offloading to multiple nearby servers. We formulate this offloading problem as the joint optimization of computation task assignment and CPU frequency scaling, in order to minimize a tradeoff between task execution time and mobile energy consumption. The resulting optimization problem is combinatorial in essence, and the optimal solution generally can only be obtained by exhaustive search with extremely high complexity. Leveraging the Markov approximation technique, we propose a light-weight algorithm that can provably converge to a bounded near-optimal solution. The simulation results show that the proposed algorithm is able to generate near-optimal solutions and outperform other benchmark algorithms.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Binbin Huang ◽  
Yangyang Li ◽  
Zhongjin Li ◽  
Linxuan Pan ◽  
Shangguang Wang ◽  
...  

With the explosive growth of mobile applications, mobile devices need to be equipped with abundant resources to process massive and complex mobile applications. However, mobile devices are usually resource-constrained due to their physical size. Fortunately, mobile edge computing, which enables mobile devices to offload computation tasks to edge servers with abundant computing resources, can significantly meet the ever-increasing computation demands from mobile applications. Nevertheless, offloading tasks to the edge servers are liable to suffer from external security threats (e.g., snooping and alteration). Aiming at this problem, we propose a security and cost-aware computation offloading (SCACO) strategy for mobile users in mobile edge computing environment, the goal of which is to minimize the overall cost (including mobile device’s energy consumption, processing delay, and task loss probability) under the risk probability constraints. Specifically, we first formulate the computation offloading problem as a Markov decision process (MDP). Then, based on the popular deep reinforcement learning approach, deep Q-network (DQN), the optimal offloading policy for the proposed problem is derived. Finally, extensive experimental results demonstrate that SCACO can achieve the security and cost efficiency for the mobile user in the mobile edge computing environment.


Sign in / Sign up

Export Citation Format

Share Document