scholarly journals Research on Energy Efficiency Management of Forklift Based on Improved YOLOv5 Algorithm

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhenyu Li ◽  
Ke Lu ◽  
Yanhui Zhang ◽  
Zongwei Li ◽  
Jia-Bao Liu

As an important tool for loading, unloading, and distributing palletized goods, forklifts are widely used in different links of industrial production process. However, due to the rapid increase in the types and quantities of goods, item statistics have become a major bottleneck in production. Based on machine vision, the paper proposes a method to count the amount of goods loaded and unloaded within the working time limit to analyze the efficiency of the forklift. The proposed method includes the data preprocessing section and the object detection section. In the data preprocessing section, through operations such as framing and clustering the collected video data and using the improved image hash algorithm to remove similar images, a new dataset of forklift goods was built. In the object detection section, the attention mechanism and the replacement network layer were used to improve the performance of YOLOv5. The experimented results showed that, compared with the original YOLOv5 model, the improved model is lighter in size and faster in detection speed without loss of detection precision, which could also meet the requirements for real-time statistics on the operation efficiency of forklifts.

2019 ◽  
Vol 12 (1) ◽  
pp. 44 ◽  
Author(s):  
Haojie Ma ◽  
Yalan Liu ◽  
Yuhuan Ren ◽  
Jingxian Yu

An important and effective method for the preliminary mitigation and relief of an earthquake is the rapid estimation of building damage via high spatial resolution remote sensing technology. Traditional object detection methods only use artificially designed shallow features on post-earthquake remote sensing images, which are uncertain and complex background environment and time-consuming feature selection. The satisfactory results from them are often difficult. Therefore, this study aims to apply the object detection method You Only Look Once (YOLOv3) based on the convolutional neural network (CNN) to locate collapsed buildings from post-earthquake remote sensing images. Moreover, YOLOv3 was improved to obtain more effective detection results. First, we replaced the Darknet53 CNN in YOLOv3 with the lightweight CNN ShuffleNet v2. Second, the prediction box center point, XY loss, and prediction box width and height, WH loss, in the loss function was replaced with the generalized intersection over union (GIoU) loss. Experiments performed using the improved YOLOv3 model, with high spatial resolution aerial remote sensing images at resolutions of 0.5 m after the Yushu and Wenchuan earthquakes, show a significant reduction in the number of parameters, detection speed of up to 29.23 f/s, and target precision of 90.89%. Compared with the general YOLOv3, the detection speed improved by 5.21 f/s and its precision improved by 5.24%. Moreover, the improved model had stronger noise immunity capabilities, which indicates a significant improvement in the model’s generalization. Therefore, this improved YOLOv3 model is effective for the detection of collapsed buildings in post-earthquake high-resolution remote sensing images.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110113
Author(s):  
Xianghua Ma ◽  
Zhenkun Yang

Real-time object detection on mobile platforms is a crucial but challenging computer vision task. However, it is widely recognized that although the lightweight object detectors have a high detection speed, the detection accuracy is relatively low. In order to improve detecting accuracy, it is beneficial to extract complete multi-scale image features in visual cognitive tasks. Asymmetric convolutions have a useful quality, that is, they have different aspect ratios, which can be used to exact image features of objects, especially objects with multi-scale characteristics. In this paper, we exploit three different asymmetric convolutions in parallel and propose a new multi-scale asymmetric convolution unit, namely MAC block to enhance multi-scale representation ability of CNNs. In addition, MAC block can adaptively merge the features with different scales by allocating learnable weighted parameters to three different asymmetric convolution branches. The proposed MAC blocks can be inserted into the state-of-the-art backbone such as ResNet-50 to form a new multi-scale backbone network of object detectors. To evaluate the performance of MAC block, we conduct experiments on CIFAR-100, PASCAL VOC 2007, PASCAL VOC 2012 and MS COCO 2014 datasets. Experimental results show that the detection precision can be greatly improved while a fast detection speed is guaranteed as well.


With the advent in technology, security and authentication has become the main aspect in computer vision approach. Moving object detection is an efficient system with the goal of preserving the perceptible and principal source in a group. Surveillance is one of the most crucial requirements and carried out to monitor various kinds of activities. The detection and tracking of moving objects are the fundamental concept that comes under the surveillance systems. Moving object recognition is challenging approach in the field of digital image processing. Moving object detection relies on few of the applications which are Human Machine Interaction (HMI), Safety and video Surveillance, Augmented Realism, Transportation Monitoring on Roads, Medical Imaging etc. The main goal of this research is the detection and tracking moving object. In proposed approach, based on the pre-processing method in which there is extraction of the frames with reduction of dimension. It applies the morphological methods to clean the foreground image in the moving objects and texture based feature extract using component analysis method. After that, design a novel method which is optimized multilayer perceptron neural network. It used the optimized layers based on the Pbest and Gbest particle position in the objects. It finds the fitness values which is binary values (x_update, y_update) of swarm or object positions. Method and output achieved final frame creation of the moving objects in the video using BLOB ANALYSER In this research , an application is designed using MATLAB VERSION 2016a In activation function to re-filter the given input and final output calculated with the help of pre-defined sigmoid. In proposed methods to find the clear detection and tracking in the given dataset MOT, FOOTBALL, INDOOR and OUTDOOR datasets. To improve the detection accuracy rate, recall rate and reduce the error rates, False Positive and Negative rate and compare with the various classifiers such as KNN, MLPNN and J48 decision Tree.


2017 ◽  
Vol 54 (10) ◽  
pp. 101002 ◽  
Author(s):  
张智丰 张智丰 ◽  
裴志利 裴志利
Keyword(s):  

Author(s):  
U.S.N. Raju ◽  
N. Kishan Varma ◽  
Harikrishna Pariveda ◽  
Kotte Abhilash Reddy

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hongjun Wang ◽  
Lizhong Dong ◽  
Hao Zhou ◽  
Lufeng Luo ◽  
Guichao Lin ◽  
...  

Accurate and reliable fruit detection in the orchard environment is an important step for yield estimation and robotic harvesting. However, the existing detection methods often target large and relatively sparse fruits, but they cannot provide a good solution for small and densely distributed fruits. This paper proposes a YOLOv3-Litchi model based on YOLOv3 to detect densely distributed litchi fruits in large visual scenes. We adjusted the prediction scale and reduced the network layer to improve the detection ability of small and dense litchi fruits and ensure the detection speed. From flowering to 50 days after maturity, we collected a total of 266 images, including 16,000 fruits, and then used them to construct the litchi dataset. Then, the k-means++ algorithm is used to cluster the bounding boxes in the labeled data to determine the priori box size suitable for litchi detection. We trained an improved YOLOv3-Litchi model, tested its litchi detection performance, and compared YOLOv3-Litchi with YOLOv2, YOLOv3, and Faster R-CNN on the actual detection effect of litchi and used the F1 value and the average detection time as the assessed value. The test results show that the F1 of YOLOv3-Litchi is higher than that of YOLOv2 algorithm 0.1, higher than that of YOLOv3 algorithm 0.08, and higher than that of Faster R-CNN algorithm 0.05; the average detection time of YOLOv3-Litchi is 29.44 ms faster than that of YOLOv2 algorithm, 19.56 ms faster than that of YOLOv3 algorithm ms, and 607.06 ms faster than that of Faster R-CNN algorithm. And the detection speed of the improved model is faster. The proposed model remits optimal detection performance for small and dense fruits. The work presented here may provide a reference for further study on fruit-detection methods in natural environments.


Sign in / Sign up

Export Citation Format

Share Document