scholarly journals Elaborate Modeling and Fragility Assessment of a Multiframe PC Box-Girder Bridge with Intermediate Hinges in California

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Tong Wu ◽  
Zhan Li ◽  
Shengchun Liu

Multiframe PC box-girder bridge with intermediate hinges is a kind of bridge having complex structural characters, which is very quintessential in California. In this study, a typical bridge was adopted to establish a nonlinear dynamic model through OpenSees platform. Intermediate hinge and inhibiting devices in it were elaborately simulated. Meanwhile, pushover analysis was used to reinstate a specimen of column test, which has the similar ratio of reinforcement to the typical bridge, and the hysteretic model parameters of the longitudinal steels inside columns were obtained. The damage indexes of column and hinge, which are primary components, under different limit states were acquired by moment-curvature analysis. Taking into account the uncertainty, nonlinear time-history analysis of the bridge was carried out through a suite of synthetic ground motions. Subsequently, a probabilistic seismic demand model was developed, and fragility curves were further focused on. According to fragility assessment, the conclusion shows that columns and hinge restrainers exhibit high fragility, and bridge system fragility is gradually determined by column fragility along with aggravating of the damage state. Unseating of girder can hardly occur at abutments and intermediate hinges. Moderate limit state could be exceeded in the positions of plug-type concrete structures in intermediate hinges, which tends to create transverse and vertical cracks, furthermore causing reinforcements yield. It indicates that it would severely underestimate the seismic fragility of intermediate hinges without considering the elaborate simulation of hinges.

Author(s):  
Dong Xu ◽  
Xiangyong Duanmu ◽  
Yafan Zhou

<p>In order to promote the application of steel-concrete composite structure in mountainous areas in China, a conceptual design for a PC continuous rigid frame box-girder bridge with corrugated steel webs and main span of 300 m was performed in the present paper. The combined corrugated steel web was proposed to increase the compressive area and improve the stability performance; thus, the self-weight of the composite box-girder bridge is significantly reduced. Flexural capacity of the whole section had been calculated with a single-beam model for the ultimate limit state (ULS). For the service limit state (SLS) design, the calculation for the composite box-girder bridge was conducted with the spatial grid model (SGM), from which 27 complete checking stresses in three layers (i.e. outside, inside and middle planes) of concrete plates and steel webs in every cross-section could be obtained. The stress history under construction stage was incorporated into the results obtained by SGM. Moreover, the stress states and stability performance for the composite box-girder bridge constructed were evaluated. The present investigation can provide references for the design and construction of the composite box-girder bridge with corrugated steel webs for long spans.</p>


2014 ◽  
Vol 501-504 ◽  
pp. 1343-1347
Author(s):  
Xin Zhao ◽  
Wan Jie Xu

This paper presented the deterioration condition and strengthening measures of a prestressed continuous box girder bridge. Finite element model of the bridge was built and condition was assessed according to current codes. Strain and deflection were measured through loading test to assess the stiffness in-service and the carrying capacity of the strengthened bridge. The results indicate that the carrying capacity limit state and serviceability limit state of the bridge are improved.


PCI Journal ◽  
1986 ◽  
Vol 31 (3) ◽  
pp. 22-47 ◽  
Author(s):  
Charles C. Zollman ◽  
Serge H. Barbaux

2015 ◽  
Vol 111 ◽  
pp. 470-477 ◽  
Author(s):  
Lukáš Krkoška ◽  
Martin Moravčík

Sign in / Sign up

Export Citation Format

Share Document