scholarly journals TapChain: A Rule Chain Recognition Model Based on Multiple Features

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Keyu Jiang ◽  
Hanyi Zhang ◽  
Weiting Zhang ◽  
Liming Fang ◽  
Chunpeng Ge ◽  
...  

Trigger-action programming (TAP) is an intelligent tool, which makes it easy for users to make intelligent rules for IoT devices and applications. Unfortunately, with the popularization of TAP and more and more rules, the rule chain from multiple rules appears gradually and brings more and more threats. Previous work pays more attention to the construction of the security model, but few people focus on how to accurately identify the rule chain from multiple rules. Inaccurate identification of rule chains will lead to the omission of rule chains with threats. This paper proposes a rule chain recognition model based on multiple features, TapChain, which can more accurately identify the rule chain without source code. We design a correction algorithm for TapChain to help us get the correct NLP analysis results. We extract 12 features from 5 aspects of the rules to make the recognition of the rule chain more accurate. According to the evaluation, compared with the previous work, the accuracy rate of TapChain is increased by 3.1%, the recall rate is increased by 1.4%, and the precision rate can reach 88.2%. More accurate identification of the rule chain can help to better implement the security policies and better balance security and availability. What’s more, according to the rule chain that TapChain can recognize, there is a new kind of rule chain with threats. We give the relevant case studies in the evaluation.

Author(s):  
Andi Pratomo Wiyono ◽  
Muhammad Aziz Muslim ◽  
Muhammad Aswin

Employees are an important element in a company that determines the progress of a company. With good quality employees in a company, it is easier to achieve desired goals of a company. Conventional (manual) recruitment method is vulnerable to non-technical factors such as frequent duplicate data or invalid data. In such condition, a Decision Support System (DSS) will be helpful in making decision process valid and reliable. In this paper, a Simple Addictive Weighting (SAW) method and Profile Matching were proposed to solve employee selection problem. This research was conducted at UPT Career Development and Entrepreneurship Universitas Brawijaya Malang, using data collected from written test selection in 2019. The effectiveness of both methods is analyzed by means of confusion matrix. SAW method give Accuracy rate of 94.7%, Precision rate of 87.5%, Recall rate of 91.3% and F-measure rate of 89.4%. On the other hand, Profile Matching method obtained the Accuracy rate of 90.4.7%, Precision rate of 81.4%, Recall rate of 81.4% and F-measure rate of 81.4%. From these results, it can be concluded that both methods have a high accuracy value accompanied by a high precision value when used for the selection process. This system can also reduce the bias of the same data very well, as can be seen from the high Recall and F-measure rates.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Chunyong Yin ◽  
Sun Zhang ◽  
Kwang-jun Kim

Anomaly detection has always been the focus of researchers and especially, the developments of mobile devices raise new challenges of anomaly detection. For example, mobile devices can keep connection with Internet and they are rarely turned off even at night. This means mobile devices can attack nodes or be attacked at night without being perceived by users and they have different characteristics from Internet behaviors. The introduction of data mining has made leaps forward in this field. Self-organizing maps, one of famous clustering algorithms, are affected by initial weight vectors and the clustering result is unstable. The optimal method of selecting initial clustering centers is transplanted from K-means to SOM. To evaluate the performance of improved SOM, we utilize diverse datasets and KDD Cup99 dataset to compare it with traditional one. The experimental results show that improved SOM can get higher accuracy rate for universal datasets. As for KDD Cup99 dataset, it achieves higher recall rate and precision rate.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jingjin Fan ◽  
Shuoben Bi ◽  
Guojie Wang ◽  
Li Zhang ◽  
Shilei Sun

In recent years, with the development of wearable sensor devices, research on sports monitoring using inertial measurement units has received increasing attention; however, a specific system for identifying various basketball shooting postures does not exist thus far. In this study, we designed a sensor fusion basketball shooting posture recognition system based on convolutional neural networks. The system, using the sensor fusion framework, collected the basketball shooting posture data of the players’ main force hand and main force foot for sensor fusion and used a deep learning model based on convolutional neural networks for recognition. We collected 12,177 sensor fusion basketball shooting posture data entries of 13 Chinese adult male subjects aged 18–40 years and with at least 2 years of basketball experience without professional training. We then trained and tested the shooting posture data using the classic visual geometry group network 16 deep learning model. The intratest achieved a 98.6% average recall rate, 98.6% average precision rate, and 98.6% accuracy rate. The intertest achieved an average recall rate of 89.8%, an average precision rate of 91.1%, and an accuracy rate of 89.9%.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 65091-65100
Author(s):  
Ayyad Maafiri ◽  
Omar Elharrouss ◽  
Saad Rfifi ◽  
Somaya Ali Al-Maadeed ◽  
Khalid Chougdali

Author(s):  
Fei Meng ◽  
Leixiao Cheng ◽  
Mingqiang Wang

AbstractCountless data generated in Smart city may contain private and sensitive information and should be protected from unauthorized users. The data can be encrypted by Attribute-based encryption (CP-ABE), which allows encrypter to specify access policies in the ciphertext. But, traditional CP-ABE schemes are limited because of two shortages: the access policy is public i.e., privacy exposed; the decryption time is linear with the complexity of policy, i.e., huge computational overheads. In this work, we introduce a novel method to protect the privacy of CP-ABE scheme by keyword search (KS) techniques. In detail, we define a new security model called chosen sensitive policy security: two access policies embedded in the ciphertext, one is public and the other is sensitive and hidden. If user's attributes don't satisfy the public policy, he/she cannot get any information (attribute name and its values) of the hidden one. Previous CP-ABE schemes with hidden policy only work on the “AND-gate” access structure or their ciphertext size or decryption time maybe super-polynomial. Our scheme is more expressive and compact. Since, IoT devices spread all over the smart city, so the computational overhead of encryption and decryption can be shifted to third parties. Therefore, our scheme is more applicable to resource-constrained users. We prove our scheme to be selective secure under the decisional bilinear Diffie-Hellman (DBDH) assumption.


2014 ◽  
Vol 24 (07) ◽  
pp. 1450023 ◽  
Author(s):  
LUNG-CHANG LIN ◽  
CHEN-SEN OUYANG ◽  
CHING-TAI CHIANG ◽  
REI-CHENG YANG ◽  
RONG-CHING WU ◽  
...  

Refractory epilepsy often has deleterious effects on an individual's health and quality of life. Early identification of patients whose seizures are refractory to antiepileptic drugs is important in considering the use of alternative treatments. Although idiopathic epilepsy is regarded as having a significantly lower risk factor of developing refractory epilepsy, still a subset of patients with idiopathic epilepsy might be refractory to medical treatment. In this study, we developed an effective method to predict the refractoriness of idiopathic epilepsy. Sixteen EEG segments from 12 well-controlled patients and 14 EEG segments from 11 refractory patients were analyzed at the time of first EEG recordings before antiepileptic drug treatment. Ten crucial EEG feature descriptors were selected for classification. Three of 10 were related to decorrelation time, and four of 10 were related to relative power of delta/gamma. There were significantly higher values in these seven feature descriptors in the well-controlled group as compared to the refractory group. On the contrary, the remaining three feature descriptors related to spectral edge frequency, kurtosis, and energy of wavelet coefficients demonstrated significantly lower values in the well-controlled group as compared to the refractory group. The analyses yielded a weighted precision rate of 94.2%, and a 93.3% recall rate. Therefore, the developed method is a useful tool in identifying the possibility of developing refractory epilepsy in patients with idiopathic epilepsy.


Sign in / Sign up

Export Citation Format

Share Document