rock interface
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 80)

H-INDEX

28
(FIVE YEARS 4)

Author(s):  
Arviandy G. Aribowo ◽  
Roeland Wildemans ◽  
Emmanuel Detournay ◽  
Nathan van de Wouw
Keyword(s):  

2022 ◽  
Author(s):  
Manuel D. Menzel ◽  
Janos L. Urai ◽  
Estibalitz Ukar ◽  
Thierry Decrausaz ◽  
Marguerite Godard

Abstract. The reaction of serpentinized peridotites with CO2-bearing fluids to listvenite (quartz-carbonate rocks) requires massive fluid flux and significant permeability despite increase in solid volume. Listvenite and serpentinite samples from Hole BT1B of the Oman Drilling Project help to understand mechanisms and feedbacks during vein formation in this process. Samples analyzed in this study contain abundant magnesite veins in closely spaced, parallel sets and younger quartz-rich veins. Cross-cutting relationships suggest that antitaxial, zoned carbonate veins with elongated grains growing from a median zone towards the wall rock are among the earliest structures to form during carbonation of serpentinite. Their bisymmetric chemical zoning of variable Ca and Fe contents, a systematic distribution of SiO2 and Fe-oxide inclusions in these zones, and cross-cutting relations with Fe-oxides and Cr-spinel indicate that they record progress of reaction fronts during replacement of serpentine by carbonate in addition to dilatant vein growth. Euhedral terminations and growth textures of carbonate vein fill together with local dolomite precipitation and voids along the vein – wall rock interface suggest that these antitaxial veins acted as preferred fluid pathways allowing infiltration of CO2-rich fluids necessary for carbonation to progress. Fluid flow was probably further enabled by external tectonic stress, as indicated by closely spaced sets of subparallel carbonate veins. Despite widespread subsequent quartz mineralization in the rock matrix and veins, which most likely caused a reduction in the permeability network, carbonation proceeded to completion in listvenite horizons.


2022 ◽  
Vol 119 ◽  
pp. 104255
Author(s):  
Zhidong Gao ◽  
Mi Zhao ◽  
Jingqi Huang ◽  
Weiwei Wang ◽  
Xiuli Du

2021 ◽  
Author(s):  
Chenxu Luo ◽  
Junbei Qiao ◽  
Jiawei Zhou ◽  
Zhijia Sun ◽  
Jun Cao

2021 ◽  
pp. 014459872110427
Author(s):  
Chuanqu Zhu ◽  
Heyi Ma ◽  
Pengtao Zhao ◽  
Jiwei Yue ◽  
Binbin Wang

During a freezing method for rock crosscut coal uncovering (RCCU), the mechanical properties of the frozen coal–rock interface have a significant impact on coal-body stability. To investigate characteristic and development mechanism of freezing strength of frozen coal–rock interface, a series of direct shear tests were conducted on frozen coal–rock interface under various testing temperatures, moisture contents in coal and normal stresses. The test results showed that the strength of the frozen coal–rock interface was affected by the moisture content in coal. The larger the moisture content was, the greater strength of the interface was. When the testing temperature was −10°C, the freezing strength increased from 75.46 to 267.42 kPa with the moisture content increasing from 3% to 9%. The ice cementing strength at the interface also increased with testing temperature decreasing. It increased from 6.44 to 73.34 kPa with the testing temperature decreasing from −2°C to −10°C when the moisture content was 5% and the normal stress was 200 kPa. With the increase of normal stress, the residual strength of the frozen coal–rock interface increased. When the moisture content in coal was 9% and the testing temperature was −10°C, the residual strength of the interface increased from 40.68 to 132.28 kPa with the normal stress increasing from 100 to 400 kPa. The testing temperature had no obvious influence on the friction coefficient and the cohesion of residual strength. When the moisture content in coal was 5%, the cohesion of residual strength increased from 23.39 to 98.7 kPa and the friction coefficient of residual strength fluctuated between 0.49 and 0.63 with the testing temperature decreasing from −2°C to −10°C. The relationship between the shear strength and the normal stress followed the Mohr–Coulomb law.


2021 ◽  
Vol 79 (10) ◽  
pp. 991-1004
Author(s):  
Hoda Jalali ◽  
Yuhui Zeng ◽  
Piervincenzo Rizzo ◽  
Andrew Bunger

This paper delves into the use of highly nonlinear solitary waves for the nondestructive identification and characterization of anisotropy in rocks. The nondestructive testing approach proposed expands upon a technique developed recently by some of the authors for the nondestructive characterization of engineering materials and structures. The technique uses the characteristics of solitary waves propagating in a periodic array of spherical particles in contact with the rock to be characterized. The features of the waves that bounce off the chain rock interface are used to infer some properties of the geomaterial under consideration. Numerical models and experimental validation were conducted to explore the feasibility of the method and to standardize the methodology for future widespread applications.


Sign in / Sign up

Export Citation Format

Share Document