scholarly journals Removal of Matrix Interferences by Nano-MgO and Co-Adsorbents for Accurate Multi-Pesticide Residue Analysis in the Chinese Medicinal Herb, Paeoniae Radix Alba

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chunyu Wang ◽  
Xinquan Wang ◽  
Jiao Wang ◽  
Shanshan Di ◽  
Zhiwei Wang ◽  
...  

A simple, accurate, and high-throughput analytical method was developed to detect 123 pesticide residues in Chinese medicinal herb Paeoniae Radix Alba (PRA) by introducing nano-MgO as a highly efficient purification material based on quick, easy, cheap, effective, rugged, and safe (QuEChERS) design concept. Various PRA samples were extracted using 8 mL 0.5% acetic acid-acetonitrile solution and purified by a dispersive solid-phase extraction method with 30 mg nano-MgO, 40 mg primary secondary amine (PSA), and 40 mg octadecylsilane (C18) as the cleanup adsorbents, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). 70.7% of pesticides showed a weak matrix effect after the purification process, indicating that this method can give the precise quantitative analysis of trace pesticides residue. The method was systematically validated under optimal conditions in five different kinds of PRA samples; good linearity was observed in the concentration range of 0.5–250 μg/L or 1–250 μg/L. Pesticide recovery in each sample spiked at concentrations of 20, 50, and 200 μg/kg ranged from 98.0% to 111% and the mean relative standard deviation ranged from 2.72% to 5.70%. Furthermore, the method comparison with the traditional QuEChERS method suggested the feasibility, advantages, and potential application prospect of the present method for the multi-pesticide residue analysis in various PRA samples.

2001 ◽  
Vol 84 (5) ◽  
pp. 1569-1578 ◽  
Author(s):  
Lutz Alder ◽  
Wolfagang Korth ◽  
Alan L Patey ◽  
Henk A van der Schee ◽  
Siegmar Schoeneweiss

Abstract Proficiency test results from 5 countries involving 61 separate interlaboratory proficiency tests for pesticide residues were examined in this study. A total of 24 different matrixes and 869 relative standard deviations of the mean (or median) pesticide residue concentration were statistically evaluated in relation to the Horwitz function. The aim was to determine whether or not the concentration-dependent relationship described by Horwitz would hold for the much narrower range of chemicals and concentrations covered in routine pesticide residue analysis. Although for fatty (animal-derived) matrixes the variability increased as the concentration decreased in line with the Horwitz equation, the between-laboratories relative standard deviations for nonfatty matrixes (fruit, vegetables, and grain) remained at 25% over the entire concentration range of 1 μg/kg to 10 mg/kg for the pesticides studied. Given these findings, the Horwitz equation remains valid for calculating uncertainties involving pesticide residues in fatty matrixes. However, for pesticide residue analyses involving nonfatty matrixes, a constant relative standard deviation of 25% is more appropriate for calculating uncertainties, particularly when a reported result is assessed against a regulatory limit.


2013 ◽  
Vol 11 (7) ◽  
pp. 1112-1131 ◽  
Author(s):  
Anna Stachniuk ◽  
Emilia Fornal

AbstractOne of the quantification methods frequently applied to pesticide residue analysis in food by liquid chromatography — mass spectrometry (LC-MS) involves matrix-matched calibrations with a representative matrix used for all commodities belonging to one group. This approach, although very practical, is deemed to generate analytical errors. The effect of the application of a representative-matrix calibration curve on the pesticide quantification result was examined. Extractions of 56 pesticides from five soft fruits (strawberries, blackberries, raspberries, black currant and red currant) were carried out using QuEChERS method. Pesticide determinations were performed by LC-MS/MS in multiple reaction monitoring mode. Quantification difference functions and parameters were proposed and calculated. At the concentration of 0.05 mg kg−1 for ca. 90% of examined pesticides the quantification difference arising from the use of a representative matrix calibration curve (raspberries) instead of a specific fruit matrix calibration curve was below 20% for black and red currents, and below 30% and 35% in the case of strawberries and blackberries, respectively. The 25% difference limit was not exceeded for 51 pesticides in black and red currents, 46 pesticides in blackberries and 45 pesticides in strawberries. Quantification difference functions and parameters such as relative standard deviation of corrected process efficiencies were found to be helpful in data-driven decision-making on the applicability of a representative matrix; the former may be also used as a tool for data correction to ensure the reliability and accuracy of analyses.


1991 ◽  
Vol 16 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Yoshitsugu ODANAKA ◽  
Naomi TOMIYAMA ◽  
Yukiko KOMA ◽  
Osami MATANO ◽  
Shinko GOTO

2012 ◽  
Vol 10 (3) ◽  
pp. 900-925 ◽  
Author(s):  
Lijin Zhang ◽  
Shaowen Liu ◽  
Xinyi Cui ◽  
Canping Pan ◽  
Ailin Zhang ◽  
...  

AbstractThe pesticide residues in foods have received increasing attention as one of the most important food safety issues. Therefore, more strict regulations on the maximum residue limits (MRLs) for pesticides in foods have been established in many countries and health organizations, based on the sensitive and reliable analysis methods of pesticide residues. However, the analysis of pesticide residues is a continuing challenge mainly because of the small quantities of analytes as well as the large amounts of interfering substances which can be co-extracted with them, often leading to experimental errors and damage to the analytical instruments. Thus, extensive sample preparation is often required for the pesticide residue analysis for the effective extraction of the analytes and removal of the interferences. This paper focuses on reviewing the recent development in the sample preparation methods for the pesticide residue analysis in foods since 2006. The methods include: liquid-liquid extraction (LLE), supercritical-fluid extraction (SFE), pressurized-liquid extraction (PLE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), gel permeation chromatography (GPC), solid-phase extraction (SPE), molecularly imprinted polymers (MIPs), matrix solid-phase dispersion (MSPD), solid-phase micro-extraction (SPME), QuEChERS, cloud point extraction (CPE) and liquid phase micro-extraction (LPME), etc. Particularly their advantages, disadvantages and future perspectives will be discussed.


Sign in / Sign up

Export Citation Format

Share Document