scholarly journals XGBoost Optimized by Adaptive Particle Swarm Optimization for Credit Scoring

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Chao Qin ◽  
Yunfeng Zhang ◽  
Fangxun Bao ◽  
Caiming Zhang ◽  
Peide Liu ◽  
...  

Personal credit scoring is a challenging issue. In recent years, research has shown that machine learning has satisfactory performance in credit scoring. Because of the advantages of feature combination and feature selection, decision trees can match credit data which have high dimension and a complex correlation. Decision trees tend to overfitting yet. eXtreme Gradient Boosting is an advanced gradient enhanced tree that overcomes its shortcomings by integrating tree models. The structure of the model is determined by hyperparameters, which is aimed at the time-consuming and laborious problem of manual tuning, and the optimization method is employed for tuning. As particle swarm optimization describes the particle state and its motion law as continuous real numbers, the hyperparameter applicable to eXtreme Gradient Boosting can find its optimal value in the continuous search space. However, classical particle swarm optimization tends to fall into local optima. To solve this problem, this paper proposes an eXtreme Gradient Boosting credit scoring model that is based on adaptive particle swarm optimization. The swarm split, which is based on the clustering idea and two kinds of learning strategies, is employed to guide the particles to improve the diversity of the subswarms, in order to prevent the algorithm from falling into a local optimum. In the experiment, several traditional machine learning algorithms and popular ensemble learning classifiers, as well as four hyperparameter optimization methods (grid search, random search, tree-structured Parzen estimator, and particle swarm optimization), are considered for comparison. Experiments were performed with four credit datasets and seven KEEL benchmark datasets over five popular evaluation measures: accuracy, error rate (type I error and type II error), Brier score, and F 1 score. Results demonstrate that the proposed model outperforms other models on average. Moreover, adaptive particle swarm optimization performs better than the other hyperparameter optimization strategies.

2021 ◽  
pp. 1-17
Author(s):  
J. Shobana ◽  
M. Murali

Text Sentiment analysis is the process of predicting whether a segment of text has opinionated or objective content and analyzing the polarity of the text’s sentiment. Understanding the needs and behavior of the target customer plays a vital role in the success of the business so the sentiment analysis process would help the marketer to improve the quality of the product as well as a shopper to buy the correct product. Due to its automatic learning capability, deep learning is the current research interest in Natural language processing. Skip-gram architecture is used in the proposed model for better extraction of the semantic relationships as well as contextual information of words. However, the main contribution of this work is Adaptive Particle Swarm Optimization (APSO) algorithm based LSTM for sentiment analysis. LSTM is used in the proposed model for understanding complex patterns in textual data. To improve the performance of the LSTM, weight parameters are enhanced by presenting the Adaptive PSO algorithm. Opposition based learning (OBL) method combined with PSO algorithm becomes the Adaptive Particle Swarm Optimization (APSO) classifier which assists LSTM in selecting optimal weight for the environment in less number of iterations. So APSO - LSTM ‘s ability in adjusting the attributes such as optimal weights and learning rates combined with the good hyper parameter choices leads to improved accuracy and reduces losses. Extensive experiments were conducted on four datasets proved that our proposed APSO-LSTM model secured higher accuracy over the classical methods such as traditional LSTM, ANN, and SVM. According to simulation results, the proposed model is outperforming other existing models.


2013 ◽  
Vol 760-762 ◽  
pp. 2194-2198 ◽  
Author(s):  
Xue Mei Wang ◽  
Yi Zhuo Guo ◽  
Gui Jun Liu

Adaptive Particle Swarm Optimization algorithm with mutation operation based on K-means is proposed in this paper, this algorithm Combined the local searching optimization ability of K-means with the gobal searching optimization ability of Particle Swarm Optimization, the algorithm self-adaptively adjusted inertia weight according to fitness variance of population. Mutation operation was peocessed for the poor performative particle in population. The results showed that the algorithm had solved the poblems of slow convergence speed of traditional Particle Swarm Optimization algorithm and easy falling into the local optimum of K-Means, and more effectively improved clustering quality.


Sign in / Sign up

Export Citation Format

Share Document