scholarly journals High-Precision Guide Stiffness Analysis Method for Micromechanism Based on the Boundary Element Method

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Manzhi Yang ◽  
Zhenyang Lv ◽  
Gang Jing ◽  
Wei Guo ◽  
Yumei Huang ◽  
...  

The guide stiffness performance directly affects the motion of the micromechanism in accuracy and security. Therefore, it is crucial to analyze the guide stiffness precisely. In this paper, a high-precision guide stiffness analysis method for the micromechanism by the boundary element method (BEM) is proposed. The validity and accuracy of the analysis method are tested by a guide stiffness experiment. In order to ensure the accuracy and safety during the micromechanism motion, a guiding unit of the micromechanism was designed based on the guiding principle. The guiding unit can provide parasitic motion and additional force in the motion of the micromechanism. Then, the stiffness equations of the beam element are derived by the boundary element method. The stiffness equation of straight circular flexure hinge is analyzed by rigid discretization and rigid combination, and the guide stiffness of the mechanism is investigated by rigid combination. Finally, according to the actual situation, the stiffness matrix of the guide rail (Kb) was proposed, and the analytical value of the guide stiffness was calculated to be 22.2 N/μm. The guide stiffness performance experiment was completed, and the experimental value is 22.3 N/μm. Therefore, the error between the analysis method and the experimental results is 0.45%. This study provides a new method for the stiffness analysis of high-precision micromechanisms and presents a reference for the design and stiffness analysis of complex structures. This method is helpful for stiffness analysis of the microrotary mechanism with high accuracy.


2020 ◽  
Vol 7 (2) ◽  
pp. 211-227
Author(s):  
Ahmed A Torky ◽  
Youssef F Rashed

Abstract This study develops a high-performance computing method using OpenACC (Open Accelerator) for the stiffness matrix and load vector generation of shear-deformable plates in bending using the boundary element method on parallel processors. The boundary element formulation for plates in bending is used to derive fully populated displacement-based stiffness matrices and load vectors at degrees of freedom of interest. The computed stiffness matrix of the plate is defined as a single superfloor element and can be solved using stiffness analysis, $Ku = F$, instead of the conventional boundary element method, $Hu = Gt$. Fortran OpenACC code implementations are proposed for the computation of the superfloor element’s stiffness, which includes one serial computing code for the CPU (central processing unit) and two parallel computing codes for the GPU (graphics processing unit) and multicore CPU. As industrial level practical floors are full of supports and geometrical information, the computation time of superfloor elements is reduced dramatically when computing on parallel processors. It is demonstrated that the OpenACC implementation does not affect numerical accuracy. The feasibility and accuracy are confirmed by numerical examples that include real buildings with industrial level structural floors. Engineering computations for massive floors with immense geometrical detail and a multitude of load cases can be modeled as is without the need for simplification.



2009 ◽  
Vol 42 (16) ◽  
pp. 6290-6299 ◽  
Author(s):  
Sergio R. Aragon ◽  
Dina Flamik


2019 ◽  
Vol 9 (5) ◽  
pp. 839 ◽  
Author(s):  
Yuan-Wu Jiang ◽  
Dan-Ping Xu ◽  
Zhi-Xiong Jiang ◽  
Jun-Hyung Kim ◽  
Sang-Moon Hwang

The balanced armature receiver (BAR) is a product based on multiphysics that enables coupling between the electromagnetic, mechanical, and acoustic domains. The three domains were modeled using the lumped parameter method (LPM) that takes advantage of an equivalent circuit. In addition, the combined finite element method (FEM) and boundary element method (BEM) was also applied to analyze the BAR. Both simulation results were verified against experimental results. The proposed LPM can predict the sound pressure level (SPL) by making use of the BAR parts dimension and material property. In addition, the previous analysis method, FEM/BEM, took 36 h, while the proposed LPM takes 1 h. So the proposed LPM can be used to check the BAR parts’ dimension and material property influence on the SPL and develop the BAR product efficiently.



Sign in / Sign up

Export Citation Format

Share Document