scholarly journals Path Planning of Mobile Robot Based on Improved Multiobjective Genetic Algorithm

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Kairong Li ◽  
Qianqian Hu ◽  
Jinpeng Liu

Path planning is the core technology of mobile robot decision-making and control and is also a research hotspot in the field of artificial intelligence. Aiming at the problems of slow response speed, long planning path, unsafe factors, and a large number of turns in the conventional path planning algorithm, an improved multiobjective genetic algorithm (IMGA) is proposed to solve static global path planning in this paper. The algorithm uses a heuristic median insertion method to establish the initial population, which improves the feasibility of the initial path and generates a multiobjective fitness function based on three indicators: path length, path security, and path energy consumption, to ensure the quality of the planned path. Then, the selection, crossover, and mutation operators are designed by using the layered method, the single-point crossover method, and the eight-neighborhood-domain single-point mutation method, respectively. Finally, the delete operation is added, to further ensure the efficient operation of the mobile robot. Simulation experiments in the grid environment show that the algorithm can improve the defects of the traditional genetic algorithm (GA), such as slow convergence speed and easy to fall into local optimum. Compared with GA, the optimal path length obtained by planning is shortened by 17%.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yong-feng Dong ◽  
Hong-mei Xia ◽  
Yan-cong Zhou

In the smart home environment, aiming at the disordered and multiple destinations path planning, the sequencing rule is proposed to determine the order of destinations. Within each branching process, the initial feasible path set is generated according to the law of attractive destination. A sinusoidal adaptive genetic algorithm is adopted. It can calculate the crossover probability and mutation probability adaptively changing with environment at any time. According to the cultural-genetic algorithm, it introduces the concept of reducing turns by parallelogram and reducing length by triangle in the belief space, which can improve the quality of population. And the fallback strategy can help to jump out of the “U” trap effectively. The algorithm analyses the virtual collision in dynamic environment with obstacles. According to the different collision types, different strategies are executed to avoid obstacles. The experimental results show that cultural-genetic algorithm can overcome the problems of premature and convergence of original algorithm effectively. It can avoid getting into the local optimum. And it is more effective for mobile robot path planning. Even in complex environment with static and dynamic obstacles, it can avoid collision safely and plan an optimal path rapidly at the same time.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110264
Author(s):  
Jiqing Chen ◽  
Chenzhi Tan ◽  
Rongxian Mo ◽  
Hongdu Zhang ◽  
Ganwei Cai ◽  
...  

Among the shortcomings of the A* algorithm, for example, there are many search nodes in path planning, and the calculation time is long. This article proposes a three-neighbor search A* algorithm combined with artificial potential fields to optimize the path planning problem of mobile robots. The algorithm integrates and improves the partial artificial potential field and the A* algorithm to address irregular obstacles in the forward direction. The artificial potential field guides the mobile robot to move forward quickly. The A* algorithm of the three-neighbor search method performs accurate obstacle avoidance. The current pose vector of the mobile robot is constructed during obstacle avoidance, the search range is narrowed to less than three neighbors, and repeated searches are avoided. In the matrix laboratory environment, grid maps with different obstacle ratios are compared with the A* algorithm. The experimental results show that the proposed improved algorithm avoids concave obstacle traps and shortens the path length, thus reducing the search time and the number of search nodes. The average path length is shortened by 5.58%, the path search time is shortened by 77.05%, and the number of path nodes is reduced by 88.85%. The experimental results fully show that the improved A* algorithm is effective and feasible and can provide optimal results.


2021 ◽  
pp. 1-16
Author(s):  
Zhaojun Zhang ◽  
Rui Lu ◽  
Minglong Zhao ◽  
Shengyang Luan ◽  
Ming Bu

The research of path planning method based on genetic algorithm (GA) for the mobile robot has received much attention in recent years. GA, as one evolutionary computation model, mimics the process of natural evolution and genetics. The quality of the initial population plays an essential role in improving the performance of GA. However, when GA based on a random initialization method is applied to path planning problems, it will lead to the emergence of infeasible solutions and reduce the performance of the algorithm. A novel GA with a hybrid initialization method, termed NGA, is proposed to solve this problem in this paper. In the initial population, NGA first randomly selects three free grids as intermediate nodes. Then, a part of the population uses a random initialization method to obtain the complete path. The other part of the population obtains the complete path using a greedy-related method. Finally, according to the actual situation, the redundant nodes or duplicate paths in the path are deleted to avoid the redundant paths. In addition, the deletion operation and the reverse operation are also introduced to the NGA iteration process to prevent the algorithm from falling into the local optimum. Simulation experiments are carried out with other algorithms to verify the effectiveness of the NGA. Simulation results show that NGA is superior to other algorithms in convergence accuracy, optimization ability, and success rate. Besides, NGA can generate the optimal feasible paths in complex environments.


Sign in / Sign up

Export Citation Format

Share Document