scholarly journals A Comparative Study of Landslide Susceptibility Mapping Using SVM and PSO-SVM Models Based on Grid and Slope Units

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shuai Zhao ◽  
Zhou Zhao

The main purpose of this study aims to apply and compare the rationality of landslide susceptibility maps using support vector machine (SVM) and particle swarm optimization coupled with support vector machine (PSO-SVM) models in Lueyang County, China, enhance the connection with the natural terrain, and analyze the application of grid units and slope units. A total of 186 landslide locations were identified by earlier reports and field surveys. The landslide inventory was randomly divided into two parts: 70% for training dataset and 30% for validation dataset. Based on the multisource data and geological environment, 16 landslide conditioning factors were selected, including control factors and triggering factors (i.e., altitude, slope angle, slope aspect, plan curvature, profile curvature, SPI, TPI, TRI, lithology, distance to faults, TWI, distance to rivers, NDVI, distance to roads, land use, and rainfall). The susceptibility between each conditioning factor and landslide was deduced using a certainty factor model. Subsequently, combined with grid units and slope units, the landslide susceptibility models were carried out by using SVM and PSO-SVM methods. The precision capability of the landslide susceptibility mapping produced by different models and units was verified through a receiver operating characteristic (ROC) curve. The results showed that the PSO-SVM model based on slope units had the best performance in landslide susceptibility mapping, and the area under the curve (AUC) values of training and validation datasets are 0.945 and 0.9245, respectively. Hence, the machine learning algorithm coupled with slope units can be considered a reliable and effective technique in landslide susceptibility mapping.

Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 325 ◽  
Author(s):  
Guirong Wang ◽  
Xinxiang Lei ◽  
Wei Chen ◽  
Himan Shahabi ◽  
Ataollah Shirzadi

In this study, hybrid integration of MultiBoosting based on two artificial intelligence methods (the radial basis function network (RBFN) and credal decision tree (CDT) models) and geographic information systems (GIS) were used to establish landslide susceptibility maps, which were used to evaluate landslide susceptibility in Nanchuan County, China. First, the landslide inventory map was generated based on previous research results combined with GIS and aerial photos. Then, 298 landslides were identified, and the established dataset was divided into a training dataset (70%, 209 landslides) and a validation dataset (30%, 89 landslides) with ensured randomness, fairness, and symmetry of data segmentation. Sixteen landslide conditioning factors (altitude, profile curvature, plan curvature, slope aspect, slope angle, stream power index (SPI), topographical wetness index (TWI), sediment transport index (STI), distance to rivers, distance to roads, distance to faults, rainfall, NDVI, soil, land use, and lithology) were identified in the study area. Subsequently, the CDT, RBFN, and their ensembles with MultiBoosting (MCDT and MRBFN) were used in ArcGIS to generate the landslide susceptibility maps. The performances of the four landslide susceptibility maps were compared and verified based on the area under the curve (AUC). Finally, the verification results of the AUC evaluation show that the landslide susceptibility mapping generated by the MCDT model had the best performance.


2021 ◽  
Author(s):  
Tingyu Zhang ◽  
Huanyuan Wang ◽  
Tianqing Chen ◽  
Zenghui Sun ◽  
Tao Wang ◽  
...  

Abstract The losses and damage caused by landslides are countless in the world every year. However, the existing approaches of landslide susceptibility mapping cannot fully meet the requirement of landslide prevention, and further excavation and innovation are also needed. Therefore, the main aim of this study is to develop a novel deep learning model namely landslide net (LSNet) to assess the landslide susceptibility in Hanyin County, China, meanwhile, support vector machine model (SVM) and kernel logistic regression model (KLR) were employed as reference model. The inventory map was generated based on 259 landslides, the training dataset and validation dataset were respectively prepared using 70% landslides and the remaining 30% landslides. The variance inflation factor (VIF) was applied to optimize each landslide predisposing factor. Three benchmark indices were used to evaluate the result of susceptibility mapping and area under receiver operating characteristics curve (AUROC) was used to compare the models. Result demonstrated that although the processing speed of LSNet model is the slowest, it still significantly outperformed its corresponding benchmark models with validation dataset, and has the highest accuracy (0.950), precision (0.951), F1 (0.951) and AUROC (0.941), which reflected excellent predictive ability in some degree. The achievements obtained in this study can improve the rapid response capability of landslide prevention for Hanyin County.


2019 ◽  
Vol 11 (22) ◽  
pp. 6323 ◽  
Author(s):  
Pham ◽  
Prakash ◽  
Chen ◽  
Ly ◽  
Ho ◽  
...  

The main objective of this study is to propose a novel hybrid model of a sequential minimal optimization and support vector machine (SMOSVM) for accurate landslide susceptibility mapping. For this task, one of the landslide prone areas of Vietnam, the Mu Cang Chai District located in Yen Bai Province was selected. In total, 248 landslide locations and 15 landslide-affecting factors were selected for landslide modeling and analysis. Predictive capability of SMOSVM was evaluated and compared with other landslide models, namely a hybrid model of the cascade generalization optimization-based support vector machine (CGSVM), individual models, such as support vector machines (SVM) and naïve Bayes trees (NBT). For validation, different quantitative criteria such as statistical based methods and area under the receiver operating characteristic curve (AUC) technique were used. Results of the study show that the SMOSVM model (AUC = 0.824) has the highest performance for landslide susceptibility mapping, followed by CGSVM (AUC = 0.815), SVM (AUC = 0.804), and NBT (AUC = 0.800) models, respectively. Thus, the proposed novel SMOSVM model is a promising method for better landslide susceptibility mapping and prediction, which can be applied also in other landslide prone areas.


Author(s):  
M. Z. Ali ◽  
H.-J. Chu ◽  
S. Ullah ◽  
M. Shafique ◽  
A. Ali

<p><strong>Abstract.</strong> The 2005 Kashmir earthquake has triggered thousands of landslides which devastated most of the livelihood and other infrastructure in the area. Landslide inventory and subsequently landslide susceptibility mapping is one of the main prerequisite for taking mitigation measure against landslide effects. This study has focused on developing most updated and realistic landslide inventory and Susceptibility mapping. The high resolution data of Worldveiw-2 having spatial resolution of 0.4 m is used for landslide inventory. Support Vector Machine (SVM) classifier was used for landslide inventory developing. Total 51460 number of landslides were classified using semi-automatic technique with covering area of 265 Km<sup>2</sup>, smallest landslide mapped is covering area of 2.01 m<sup>2</sup> and the maximum covered area of single landslide is 3.01 Km<sup>2</sup>. Nine influential causative factors are used for landslide susceptibility mapping. Those causative factors include slope, aspect, profile curvature, elevation, distance from fault lines, distance from streams and geology. Logistic regression model was used for the Landslides susceptibility modelling. From model the highest coefficient was assigned to geology which shows that the geology has higher influence in the area. For landslide susceptibility mapping the 70 % of the data was used and 30% is used for the validation of the model. The prediction accuracy of the model in this study is 92 % using validation data. This landslide susceptibility map can be used for land use planning and also for the mitigation measure during any disaster.</p>


2022 ◽  
Author(s):  
Xiaolong Deng ◽  
Guangji Sun ◽  
Naiwu He ◽  
Yonghua Yu

Abstract A new model, integrating information theory, fractal theory and statistical model for accurate landslide susceptibility mapping (LSM) at regional scales, has been proposed. In this model, landslide conditional factors are firstly classified with an optimal number of classes, which is determined by maximizing their information coefficients estimated from Shannon’s entropy model. The spatial association between influencing factors and induced landslides has been measured by introducing the variable fractal dimension method (VFDM). The VFDM approach fully considers the characteristics of landslide fractal distribution. Then the fractal dimensions (\(D\)) are calculated to provide multiple factors with various numerical weights. The proposed model eventually combines the landslide frequency ratio (\(fr\)) of each factor with corresponding weight to achieve spatial prediction of landslides, illustrated by an example area in China. In the study area, 500 landslides have been identified by aerial photograph interpretation, extensive field investigations, historical and bibliographical landslide data. In the model, these landslides are randomly split into a training dataset (70 %)and a validating dataset (30 %) Seven factors are recognized and analyzed by frequency ratio (FR) method, including lithology, distance to fault, altitude, slope, aspect, distance to stream and distance to the road. The receiver operating characteristic curve (AUROC) has been adopted to compare and validate the model results. Results show that the proposed landslide model achieved a more accurate prediction with AUROC equal to 0.8467, over-performing than the conventional frequency ratio method (AUROC=0.8088). According to the final prognostic landslide susceptibility map, 16.37 % f the study area shows very high and high susceptibility, accounting for 63.55 % f the entire landslides. Evaluation of relative factor importance based on a one-by-one factor removal test indicates that the lithology factor contributes unique information for landslides. In conclusion, the example demonstrates that the proposed framework is promising for further improvement of LSM.


Sign in / Sign up

Export Citation Format

Share Document