sequential minimal optimization
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 33)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Tuğçe Ayhan ◽  
Tamer Uçar

The demand for credit is increasing constantly. Banks are looking for various methods of credit evaluation that provide the most accurate results in a shorter period in order to minimize their rising risks. This study focuses on various methods that enable the banks to increase their asset quality without market loss regarding the credit allocation process. These methods enable the automatic evaluation of loan applications in line with the sector practices, and enable determination of credit policies/strategies based on actual needs. Within the scope of this study, the relationship between the predetermined attributes and the credit limit outputs are analyzed by using a sample data set of consumer loans. Random forest (RF), sequential minimal optimization (SMO), PART, decision table (DT), J48, multilayer perceptron(MP), JRip, naïve Bayes (NB), one rule (OneR) and zero rule (ZeroR) algorithms were used in this process. As a result of this analysis, SMO, PART and random forest algorithms are the top three approaches for determining customer credit limits.


Author(s):  
Rana Riad K. AL-Taie ◽  
Basma Jumaa Saleh ◽  
Ahmed Yousif Falih Saedi ◽  
Lamees Abdalhasan Salman

Data mining is defined as a search through large amounts of data for valuable information. The association rules, grouping, clustering, prediction, sequence modeling is some essential and most general strategies for data extraction. The processing of data plays a major role in the healthcare industry's disease detection. A variety of disease evaluations should be required to diagnose the patient. However, using data mining strategies, the number of examinations should be decreased. This decreased examination plays a crucial role in terms of time and results. Heart disease is a death-provoking disorder. In this recent instance, health issues are immense because of the availability of health issues and the grouping of various situations. Today, secret information is important in the healthcare industry to make decisions. For the prediction of cardiovascular problems, (Weka 3.8.3) tools for this analysis are used for the prediction of data extraction algorithms like sequential minimal optimization (SMO), multilayer perceptron (MLP), random forest and Bayes net. The data collected combine the prediction accuracy results, the receiver operating characteristic (ROC) curve, and the PRC value. The performance of Bayes net (94.5%) and random forest (94%) technologies indicates optimum performance rather than the sequential minimal optimization (SMO) and multilayer perceptron (MLP) methods.


2021 ◽  
Vol 25 (Special) ◽  
pp. 1-127-1-137
Author(s):  
Nibras Z. Salih ◽  
◽  
Walaa Khalaf ◽  

In the multiple instances learning framework, instances are arranged into bags, each bag contains several instances, the labels of each instance are not available but the label is available for each bag. Whilst in a single instance learning each instance is connected with the label that contains a single feature vector. This paper examines the distinction between these paradigms to see if it is appropriate, to cast the problem within a multiple instance framework. In single-instance learning, two datasets are applied (students’ dataset and iris dataset) using Naïve Bayes Classifier (NBC), Multilayer perceptron (MLP), Support Vector Machine (SVM), and Sequential Minimal Optimization (SMO), while SimpleMI, MIWrapper, and MIBoost in multiple instances learning. Leave One Out Cross-Validation (LOOCV), five and ten folds Cross-Validation techniques (5-CV, 10-CV) are implemented to evaluate the classification results. A comparison of the result of these techniques is made, several algorithms are found to be more effective for classification in the multiple instances learning. The suitable algorithms for the students' dataset are MIBoost with MLP for LOOCV with an accuracy of 75%, whereas SimpleMI with SMO for the iris dataset is the suitable algorithm for 10-CV with an accuracy of 99.33%.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yu Wan ◽  
Zhuo Wang ◽  
Tzong-Yi Lee

Abstract Background Cancer is one of the major causes of death worldwide. To treat cancer, the use of anticancer peptides (ACPs) has attracted increased attention in recent years. ACPs are a unique group of small molecules that can target and kill cancer cells fast and directly. However, identifying ACPs by wet-lab experiments is time-consuming and labor-intensive. Therefore, it is significant to develop computational tools for ACPs prediction. Though some ACP prediction tools have been developed recently, their performances are not well enough and most of them do not offer a function to distinguish ACPs from antimicrobial peptides (AMPs). Considering the fact that a growing number of studies have shown that some AMPs exhibit anticancer function, this work tries to build a model for distinguishing AMPs from ACPs in addition to a model that predicts ACPs from whole peptides. Results This study chooses amino acid composition, N5C5, k-space, position-specific scoring matrix (PSSM) as features, and analyzes them by machine learning methods, including support vector machine (SVM) and sequential minimal optimization (SMO) to build a model (model 2) for distinguishing ACPs from whole peptides. Another model (model 1) that distinguishes ACPs from AMPs is also developed. Comparing to previous models, models developed in this research show better performance (accuracy: 85.5% for model 1 and 95.2% for model 2). Conclusions This work utilizes a new feature, PSSM, which contributes to better performance than other features. In addition to SVM, SMO is used in this research for optimizing SVM and the SMO-optimized models show better performance than non-optimized models. Last but not least, this work provides two different functions, including distinguishing ACPs from AMPs and distinguishing ACPs from all peptides. The second SMO-optimized model, which utilizes PSSM as a feature, performs better than all other existing tools.


2021 ◽  
Vol 7 ◽  
pp. e456
Author(s):  
Lakshmana Kumar Ramasamy ◽  
Shynu Gopalan Padinjappurathu ◽  
Seifedine Kadry ◽  
Robertas Damaševičius

Diabetes is one of the most prevalent diseases in the world, which is a metabolic disorder characterized by high blood sugar. Diabetes complications are leading to Diabetic Retinopathy (DR). The early stages of DR may have either no sign or cause minor vision problems, but later stages of the disease can lead to blindness. DR diagnosis is an exceedingly difficult task because of changes in the retina during the disease stages. An automatic DR early detection method can save a patient's vision and can also support the ophthalmologists in DR screening. This paper develops a model for the diagnostics of DR. Initially, we extract and fuse the ophthalmoscopic features from the retina images based on textural gray-level features like co-occurrence, run-length matrix, as well as the coefficients of the Ridgelet Transform. Based on the retina features, the Sequential Minimal Optimization (SMO) classification is used to classify diabetic retinopathy. For performance analysis, the openly accessible retinal image datasets are used, and the findings of the experiments demonstrate the quality and efficacy of the proposed method (we achieved 98.87% sensitivity, 95.24% specificity, 97.05% accuracy on DIARETDB1 dataset, and 90.9% sensitivity, 91.0% specificity, 91.0% accuracy on KAGGLE dataset).


Sign in / Sign up

Export Citation Format

Share Document