scholarly journals Research on Dynamic Balance of Spindle Rotor System Based on Particle Swarm Optimization

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhan Wang ◽  
Dongzheng Li ◽  
Zinan Wang ◽  
Aoxiang Liu ◽  
Ruiyao Tao

The dynamic balance is a significant issue for the nonlinear dynamic characteristics of the spindle rotor system. However, there is a problem that the dynamic balance is lacking detailed study on optimization method. In the paper, a modal dynamic balance optimization model of spindle rotor system is proposed, which can intend to improve the accuracy of spindle rotor system modal dynamic balance. Because the multiorder unbalance components are the main spindle rotor system mode shapes, the particle swarm optimization (PSO) method is adopted. The sum of squares of residual vibration after balancing is taken as the optimization objective, and the correction is presented as the optimization variable in the optimization model. The optimal correction weight of every unbalance component is calculated through a modal matrix equation of PSO. The vibration amplitude that is greatly reduced after optimization balance is presented under different conditions. The balancing effect shows a better dynamic characteristic than that of traditional methods. And the fluctuation range of the axis track of the rotor system also shows reductive phenomenon. The proposed optimization spindle rotor system model is well verified through experiments. It can contribute a theoretical optimization foundation for available dynamic balance in spindle rotor system.

Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


Sensor Review ◽  
2014 ◽  
Vol 34 (3) ◽  
pp. 304-311 ◽  
Author(s):  
Pengfei Jia ◽  
Fengchun Tian ◽  
Shu Fan ◽  
Qinghua He ◽  
Jingwei Feng ◽  
...  

Purpose – The purpose of the paper is to propose a new optimization algorithm to realize a synchronous optimization of sensor array and classifier, to improve the performance of E-nose in the detection of wound infection. When an electronic nose (E-nose) is used to detect the wound infection, sensor array’s optimization and parameters’ setting of classifier have a strong impact on the classification accuracy. Design/methodology/approach – An enhanced quantum-behaved particle swarm optimization based on genetic algorithm, genetic quantum-behaved particle swarm optimization (G-QPSO), is proposed to realize a synchronous optimization of sensor array and classifier. The importance-factor (I-F) method is used to weight the sensors of E-nose by its degree of importance in classification. Both radical basis function network and support vector machine are used for classification. Findings – The classification accuracy of E-nose is the highest when the weighting coefficients of the I-F method and classifier’s parameters are optimized by G-QPSO. All results make it clear that the proposed method is an ideal optimization method of E-nose in the detection of wound infection. Research limitations/implications – To make the proposed optimization method more effective, the key point of further research is to enhance the classifier of E-nose. Practical implications – In this paper, E-nose is used to distinguish the class of wound infection; meanwhile, G-QPSO is used to realize a synchronous optimization of sensor array and classifier of E-nose. These are all important for E-nose to realize its clinical application in wound monitoring. Originality/value – The innovative concept improves the performance of E-nose in wound monitoring and paves the way for the clinical detection of E-nose.


Sign in / Sign up

Export Citation Format

Share Document