scholarly journals The Behavior of Weighted Graph’s Orbit and Its Energy

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Ali A. Shukur ◽  
Akbar Jahanbani ◽  
Haider Shelash

Studying the orbit of an element in a discrete dynamical system is one of the most important areas in pure and applied mathematics. It is well known that each graph contains a finite (or infinite) number of elements. In this work, we introduce a new analytical phenomenon to the weighted graphs by studying the orbit of their elements. Studying the weighted graph's orbit allows us to have a better understanding to the behaviour of the systems (graphs) during determined time and environment. Moreover, the energy of the graph’s orbit is given.

1989 ◽  
Vol 03 (15) ◽  
pp. 1185-1188 ◽  
Author(s):  
J. SEIMENIS

We develop a method to find solutions of the equations of motion in Hamiltonian Dynamical Systems. We apply this method to the system [Formula: see text] We study the case a → 0 and we find that in this case the system has an infinite number of period dubling bifurcations.


2009 ◽  
Vol 3 (5) ◽  
pp. 414-428 ◽  
Author(s):  
J.G.C. Angeles ◽  
Z. Ouyang ◽  
A.M. Aguirre ◽  
P.J. Lammers ◽  
M. Song

10.37236/7188 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Bolor Turmunkh

Nakajima (2003) introduced a $t$-deformation of $q$-characters, $(q,t)$-characters for short, and their twisted multiplication through the geometry of quiver varieties. The Nakajima $(q,t)$-characters of Kirillov-Reshetikhin modules satisfy a $t$-deformed $T$-system. The $T$-system is a discrete dynamical system that can be interpreted as a mutation relation in a cluster algebra in two different ways, depending on the choice of direction of evolution. In this paper, we show that the Nakajima $t$-deformed $T$-system of type $A_r$ forms a quantum mutation relation in a quantization of exactly one of the cluster algebra structures attached to the $T$-system.


2021 ◽  
Author(s):  
Rinki Imada ◽  
Tomohiro Tachi

Abstract Folded surfaces of origami tessellations have attracted much attention because they sometimes exhibit non-trivial behaviors. It is known that cylindrical folded surfaces of waterbomb tessellation called waterbomb tube can transform into wave-like surfaces, which is a unique phenomenon not observed on other tessellations. However, the theoretical reason why wave-like surfaces arise has been unclear. In this paper, we provide a kinematic model of waterbomb tube by parameterizing the geometry of a module of waterbomb tessellation and derive a recurrence relation between the modules. Through the visualization of the configurations of waterbomb tubes under the proposed kinematic model, we classify solutions into three classes: cylinder solution, wave-like solution, and finite solution. Furthermore, we give proof of the existence of a wave-like solution around one of the cylinder solutions by applying the knowledge of the discrete dynamical system to the recurrence relation.


2018 ◽  
Vol 2020 (9) ◽  
pp. 2818-2831 ◽  
Author(s):  
Max Glick

Abstract The pentagram map is a discrete dynamical system defined on the space of polygons in the plane. In the 1st paper on the subject, Schwartz proved that the pentagram map produces from each convex polygon a sequence of successively smaller polygons that converges exponentially to a point. We investigate the limit point itself, giving an explicit description of its Cartesian coordinates as roots of certain degree three polynomials.


2010 ◽  
Vol 20 (06) ◽  
pp. 1789-1795 ◽  
Author(s):  
HONGJUN CAO ◽  
CAIXIA WANG ◽  
MIGUEL A. F. SANJUÁN

The continuous Bonhoeffer–van der Pol (BVP for short) oscillator is transformed into a map-based BVP model by using the forward Euler scheme. At first, the bifurcations and chaos of the map-based BVP model are investigated when the step size varies as a bifurcation parameter. By using the fast-slow decomposition technique, a two-parameter bifurcation diagram is obtained to give insight into the effect of the step size on bifurcations and chaos of the map-based BVP model. The investigation shows that the period-doubling bifurcation is dependent on the step size, while the saddle-node bifurcation is independent of the step size. Second, when the fast–slow decomposition technique cannot be used, we rigorously prove that in the map-based BVP model there exists chaos in the sense of Marotto when the discrete step size varies as a bifurcation parameter. These results show that the discrete step sizes play a vital role between the continuous-time dynamical system and the corresponding discrete dynamical system. Much attention should be paid on the step size when a map-based neuron model is used as an alternative to a continuous neuron model.


Sign in / Sign up

Export Citation Format

Share Document